Refine
Has Fulltext
- yes (37)
Is part of the Bibliography
- yes (37)
Year of publication
Document Type
- Doctoral Thesis (37)
Keywords
- Staphylococcus aureus (7)
- Chlamydia trachomatis (6)
- Neisseria gonorrhoeae (4)
- Chlamydia (3)
- Antigen CD8 (2)
- Dendritische Zelle (2)
- MRSA (2)
- Mitochondria (2)
- Mitochondrium (2)
- Transkriptionsfaktor (2)
Institute
Sonstige beteiligte Institutionen
ResearcherID
- N-2030-2015 (1)
Chlamydia infect millions worldwide and cause infertility and blinding trachoma. Chlamydia trachomatis (C. trachomatis) is an obligate intracellular gram-negative pathogen with a significantly reduced genome. This bacterium shares a unique biphasic lifecycle in which it alternates between the infectious, metabolically inert elementary bodies (EB) and the non-infections, metabolically active replicative reticular bodies (RB).
One of the challenges of working with Chlamydia is its difficult genetic accessibility. In the present work, the high-throughput method TagRNA-seq was used to differentially label transcriptional start sites (TSS) and processing sites (PSS) to gain new insights into the transcriptional landscape of C. trachomatis in a coverage that has never been achieved before. Altogether, 679 TSSs and 1067 PSSs were detected indicating its high transcriptional activity and the need for transcriptional regulation. Furthermore, the analysis of the data revealed potentially new non-coding ribonucleic acids (ncRNA) and a map of transcriptional processing events. Using the upstream sequences, the previously identified σ66 binding motif was detected.
In addition, Grad-seq for C. trachomatis was established to obtain a global interactome of the RNAs and proteins of this intracellular organism. The Grad-Seq data suggest that many of the newly annotated RNAs from the TagRNA-seq approach are present in complexes. Although Chlamydia lack the known RNA-binding proteins (RBPs), e.g. Hfq and ProQ, observations in this work reveal the presence of a previously unknown RBP.
Interestingly, in the gradient analysis it was found that the σ66 factor forms a complex with the RNA polymerase (RNAP). On the other hand, the σ28 factor is unbound. This is in line with results from previous studies showing that most of the genes are under control of σ66. The ncRNA IhtA is known to function via direct base pairing to its target RNA of HctB, and by doing so is influencing the chromatin condensation in Chlamydia. This study confirmed that lhtA is in no complex. On the other hand, the ncRNA ctrR0332 was found to interact with the SNF2 protein ctl0077, a putative helicase. Both molecules co-sedimented in the gradient and were intact after an aptamer-based RNA pull-down. The SWI2/SNF2 class of proteins are nucleosome remodeling complexes. The prokaryotic RapA from E. coli functions as transcription regulator by stimulating the RNAP recycling. This view might imply that the small ncRNA (sRNA) ctrR0332 is part of the global regulation network in C. trachomatis controlling the transition between EBs and RBs via interaction with the SNF2 protein ctl0077.
The present work is the first study describing a global interactome of RNAs and proteins in C. trachomatis providing the basis for future interaction studies in the field of this pathogen.
Chlamydia trachomatis, an obligate intracellular human pathogen, is the world’s leading cause of infection related blindness and the most common, bacterial sexually transmitted disease. In order to establish an optimal replicative niche, the pathogen extensively interferes with the physiology of the host cell. Chlamydia switches in its complex developmental cycle between the infectious non-replicative elementary bodies (EBs) and the non-infectious replicative reticulate bodies (RBs). The transformation to RBs, shortly after entering a host cell, is a crucial process in infection to start chlamydial replication. Currently it is unknown how the transition from EBs to RBs is initiated. In this thesis, we could show that, in an axenic media approach, L glutamine uptake by the pathogen is crucial to initiate the EB to RB transition. L-glutamine is converted to amino acids which are used by the bacteria to synthesize peptidoglycan. Peptidoglycan inturn is believed to function in separating dividing Chlamydia. The glutamine metabolism is reprogrammed in infected cells in a c-Myc-dependent manner, in order to accomplish the increased requirement for L-glutamine. Upon a chlamydial infection, the proto-oncogene c-Myc gets upregulated to promote host cell glutaminolysis via glutaminase GLS1 and the L-glutamine transporter SLC1A5/ASCT2. Interference with this metabolic reprogramming leads to limited growth of C. trachomatis. Besides the active infection, Chlamydia can persist over a long period of time within the host cell whereby chronic and recurrent infections establish. C. trachomatis acquire a persistent state during an immune attack in response to elevated interferon-γ (IFN-γ) levels. It has been shown that IFN-γ activates the catabolic depletion of L-tryptophan via indoleamine 2,3-dioxygenase (IDO), resulting in the formation of non-infectious atypical chlamydial forms. In this thesis, we could show that IFN-γ depletes the key metabolic regulator c-Myc, which has been demonstrated to be a prerequisite for chlamydial development and growth, in a STAT1-dependent manner. Moreover, metabolic analyses revealed that the pathogen de routs the host cell TCA cycle to enrich pyrimidine biosynthesis. Supplementing pyrimidines or a-ketoglutarate helps the bacteria to partially overcome the persistent state. Together, the results indicate a central role of c-Myc induced host glutamine metabolism reprogramming and L-glutamine for the development of C. trachomatis, which may provide a basis for anti-infectious strategies. Furthermore, they challenge the longstanding hypothesis of L-tryptophan shortage as the sole reason for IFN-γ induced persistence and suggest a pivotal role of c-Myc in the control of the C. trachomatis dormancy.
Abstract
Background
HLA-G is a non-classical MHC class I molecule which exerts strong immunosuppressive effects on various immune cells. Several membrane-bound and soluble isoforms are known. Physiologically, HLA-G is predominantly expressed in the placenta, where it contributes to protecting the semi-allogeneic embryo from rejection by the maternal immune system. However, HLA-G is also often upregulated during tumourigenesis, such as in ovarian cancer. The aim of this thesis is to investigate how soluble HLA-G may contribute to local immunosuppression in ovarian carcinomas, and to characterize HLA-G expression in different ovarian carcinoma subtypes and metastases.
Results
As reported by others, physiological HLA-G expression is restricted to few tissues, such as placenta and testes. Here, HLA-G was also detected in the medulla of the adrenal gland. In contrast, HLA-G expression was frequently detected in tumours of all assessed subtypes of ovarian carcinomas (serous, mucinous, endometrioid and clear cell). Highest expression levels were detected in high-grade serous carcinomas. In primary tumours, expression of HLA-G correlated with expression of classical MHC class I molecules HLA-A, -B and -C. Surprisingly, high levels of HLA-G were also detected on dendritic cells in local lymph nodes. As no expression of HLA-G was inducible in monocytes or dendritic cells from healthy donors in response to IL-10 or IL-4, we speculated that tumour-derived soluble HLA-G might be transferred to dendritic cells via the lymphatic system. Accordingly, high levels of tumour-derived soluble HLA-G were detected in ovarian cancer ascites samples. In vitro, dendritic cells expanded in the presence of IL-4, IL-10 and GM-CSF (DC-10) were particularly prone to binding high amounts of soluble HLA-G via ILT receptors. Furthermore, HLA-G loaded DC-10 cells inhibited the proliferation of CD8 effector cells and induced regulatory T cells, even when the DC-10 cells had been fixed with paraformaldehyde.
Conclusion
The immunosuppressive molecule HLA-G is overexpressed in high-grade serous ovarian carcinomas, which account for the majority of ovarian cancers. In particular tumours with a high mutational burden and intact expression of classical, immunogenic MHC class Ia molecules may use HLA-G to escape from immunosurveillance. Additionally, tumour-derived soluble HLA-G may inhibit adaptive immune responses by binding to dendritic cells in local lymph nodes. Dendritic cells usually play a decisive role in the initiation of adaptive anti-tumour immune responses by presenting tumour antigens to cytotoxic T cells. In contrast, dendritic cells loaded with soluble HLA-G inhibit the proliferation of effector T cells and promote the induction of regulatory T cells. Thus, soluble HLA-G that is transferred to dendritic cells via lymphatic vessels may enable ovarian carcinomas to remotely suppress anti-tumour immune responses in local lymph nodes. This novel immune-escape mechanism may also exist in other solid tumours that express HLA-G.
Viral infections induce a significant impact on various functional categories of biological processes in the host. The understanding of this complex modification of the infected host immune system requires a global and detailed overview on the infection process. Therefore it is essential to apply a powerful approach which identifies the involved components conferring the capacity to recognize and respond to specific pathogens, which in general are defeated in so-called compatible virus-plant infections. Comparative and integrated systems biology of plant-virus interaction progression may open a novel framework for a systemic picture on the modulation of plant immunity during different infections and understanding pathogenesis mechanisms. In this thesis these approaches were applied to study plant-virus infections during two main viral pathogens of cassava: Cassava brown streak virus and African cassava mosaic virus.
Here, the infection process was reconstructed by a combination of omics data-based analyses and metabolic network modelling, to understand the major metabolic pathways and elements underlying viral infection responses in different time series, as well as the flux activity distribution to gain more insights into the metabolic flow and mechanism of regulation; this resulted in simultaneous investigations on a broad spectrum of changes in several levels including the gene expression, primary metabolites, and enzymatic flux associated with the characteristic disease development process induced in Nicotiana benthamiana plants due to infection with CBSV or ACMV.
Firstly, the transcriptome dynamics of the infected plant was analysed by using mRNA-sequencing, in order to investigate the differential expression profile according the symptom developmental stage. The spreading pattern and different levels of biological functions of these genes were analysed associated with the infection stage and virus entity. A next step was the Real-Time expression modification of selected key pathway genes followed by their linear regression model. Subsequently, the functional loss of regulatory genes which trigger R-mediated resistance was observed. Substantial differences were observed between infected mutants/transgenic lines and wild-types and characterized in detail. In addition, we detected a massive localized accumulation of ROS and quantified the scavenging genes expression in the infected wild-type plants relative to mock infected controls.
Moreover, we found coordinated regulated metabolites in response to viral infection measured by using LC-MS/MS and HPLC-UV-MS. This includes the profile of the phytohormones, carbohydrates, amino acids, and phenolics at different time points of infection with the RNA and DNA viruses. This was influenced by differentially regulated enzymatic activities along the salicylate, jasmonate, and chorismate biosynthesis, glycolysis, tricarboxylic acid cycle, and pentose phosphate pathways, as well as photosynthesis, photorespiration, transporting, amino acid and fatty acid biosynthesis. We calculated the flux redistribution considering a gradient of modulation for enzymes along different infection stages, ranging from pre-symptoms towards infection stability.
Collectively, our reverse-engineering study consisting of the generation of experimental data and modelling supports the general insight with comparative and integrated systems biology into a model plant-virus interaction system. We refine the cross talk between transcriptome modification, metabolites modulation and enzymatic flux redistribution during compatible infection progression. The results highlight the global alteration in a susceptible host, correlation between symptoms severity and the alteration level. In addition we identify the detailed corresponding general and specific responses to RNA and DNA viruses at different stages of infection. To sum up, all the findings in this study strengthen the necessity of considering the timing of treatment, which greatly affects plant defence against viral infection, and might result in more efficient or combined targeting of a wider range of plant pathogens.
Chlamydia trachomatis (Ct) is an obligate intracellular human pathogen. It causes blinding trachoma and sexually transmitted disease such as chlamydia, pelvic inflammatory disease and lymphogranuloma venereum. Ct has a unique biphasic development cycle and replicates in an intracellular vacuole called inclusion. Normally it has two forms: the infectious form, elementary body (EB); and the non-infectious form, reticulate body (RB). Ct is not easily amenable to genetic manipulation. Hence, to understand the infection process, it is crucial to study how the metabolic activity of Ct exactly evolves in the host cell and what roles of EB and RB play differentially in Ct metabolism during infection. In addition, Ct was found regularly coinfected with other pathogens in patients who got sexually transmitted diseases (STDs). A lack of powerful methods to culture Ct outside of the host cell makes the detailed molecular mechanisms of coinfection difficult to study.
In this work, a genome-scale metabolic model with 321 metabolites and 277 reactions was first reconstructed by me to study Ct metabolic adaptation in the host cell during infection. This model was calculated to yield 84 extreme pathways, and metabolic flux strength was then modelled regarding 20hpi, 40hpi and later based on a published proteomics dataset. Activities of key enzymes involved in target pathways were further validated by RT-qPCR in both HeLa229 and HUVEC cell lines. This study suggests that Ct's major active pathways involve glycolysis, gluconeogenesis, glycerolphospholipid biosynthesis and pentose phosphate pathway, while Ct's incomplete tricarboxylic acid cycle and fatty acid biosynthesis are less active. EB is more activated in almost all these carbohydrate pathways than RB. Result suggests the survival of Ct generally requires a lot of acetyl-CoA from the host. Besides, both EB and RB can utilize folate biosynthesis to generate NAD(P)H but may use different pathways depending on the demands of ATP. When more ATP is available from both host cell and Ct itself, RB is more activated by utilizing energy providing chemicals generated by enzymes associated in the nucleic acid metabolism. The forming of folate also suggests large glutamate consumption, which is supposed to be converted from glutamine by the glutamine-fructose-6-phosphate transaminase (glmS) and CTP synthase (pyrG).
Then, RNA sequencing (RNA-seq) data analysis was performed by me in a coinfection study. Metatranscriptome from patient RNA-seq data provides a realistic overview. Thirteen patient samples were collected and sequenced by our collaborators. Six male samples were obtained by urethral swab, and seven female samples were collected by cervicovaginal lavage. All the samples were Neisseria gonorrhoeae (GC) positive, and half of them had coinfection with Ct. HISAT2 and Stringtie were used for transcriptomic mapping and assembly respectively, and differential expression analysis by DESeq2, Ballgown and Cuffdiff2 are parallelly processed for comparison. Although the measured transcripts were not sufficient to assemble Ct's transcriptome, the differential expression of genes in both the host and GC were analyzed by comparing Ct positive group (Ct+) against Ct-uninfected group. The results show that in the Ct+ group, the host MHC class II immune response was highly induced. Ct infection is associated with the regulation of DNA methylation, DNA double-strand damage and ubiquitination. The analysis also shows Ct infection enhances host fatty acid beta oxidation, thereby inducing mROS, and the host responds to reduce ceramide production and glycolysis. The coinfection upregulates GC's own ion transporters and amino acid uptake, while it downregulates GC's restriction and modification systems. Meanwhile, GC has the nitrosative and oxidative stress response and also increases the ability for ferric uptake especially in the Ct+ group compared to Ct-uninfected group.
In conclusion, methods in bioinformatics were used here in analyzing the metabolism of Ct itself, and the responses of the host and GC respectively in a coinfection study with and without Ct. These methods provide metabolic and metatranscriptomic details to study Ct metabolism during infection and Ct associated coinfection in the human microbiota.
Immunotherapy with engineered T cells expressing a tumor-specific chimeric antigen receptor (CAR) is under intense preclinical and clinical investigation. This involves a rapidly increasing portfolio of novel target antigens and CAR designs that need to be tested in time- and work-intensive screening campaigns in primary T cells. Therefore, we anticipated that a standardized screening platform, similar as in pharmaceutical small molecule and antibody discovery, would facilitate the analysis of CARs by pre-selecting lead candidates from a large pool of constructs that differ in their extracellular and intracellular modules. Because CARs integrate structural elements of the T cell receptor (TCR) complex and engage TCR-associated signaling molecules upon stimulation, we reasoned that the transcription factors nuclear factor-κB (NF-κB) and nuclear factor of activated T cells (NFAT) could serve as surrogate markers for primary T cell function. The nuclear translocation of both transcription factors in primary T cells, which we observed following CAR stimulation, supported our rationale to use NF-κB and NFAT as indicators of CAR-mediated activation in a screening platform.
To enable standardized and convenient analyses, we have established a CAR-screening platform based on the human T cell lymphoma line Jurkat that has been modified to provide rapid detection of NF-κB and NFAT activation. For this purpose, Jurkat cells contained NF-κB and NFAT-inducible reporter genes that generate a duplex output of cyan fluorescent protein (CFP) and green fluorescent protein (GFP), respectively. Upon stimulation of NF-κB/NFAT reporter cells, the expression of both fluorophores could be readily quantified in high-throughput screening campaigns by flow cytometry.
We modified the reporter cells with CD19-specific and ROR1-specific CARs, and we co-cultured them with antigen-positive stimulator cells to analyze NF-κB and NFAT activation. CAR-induced reporter signals could already be detected after 6 hours. The optimal readout window with high-level reporter activation was set to 24 hours, allowing the CAR-screening platform to deliver results in a rapid turnaround time. A reporter cell-screening campaign of a spacer library with CARs comprising a short, intermediate or long IgG4-Fc domain allowed distinguishing functional from non-functional constructs. Similarly, reporter cell-based analyses identified a ROR1-CAR with 4-1BB domain from a library with different intracellular signal modules due to its ability to confer high NF-κB activation, consistent with data from in vitro and in vivo studies with primary T cells. The results of both CAR screening campaigns were highly reproducible, and the time required for completing each testing campaign was substantially shorter with reporter cells (6 days) compared to primary T cells (21 days). We further challenged the reporter cells in a large-scale screening campaign with a ROR1 CAR library comprising mutations in the VH CDR3 sequence of the R11 scFv. This region is crucial for binding the R11 epitope of ROR1, and we anticipated that mutations here would cause a loss of specificity and affinity for most of the CAR variants. This provided the opportunity to determine whether the CAR screening platform was able to retrieve functional constructs from a large pool of CAR variants. Indeed, using a customized pre enrichment and screening strategy, the reporter cells identified a functional CAR variant that was present with a frequency of only 6 in 1.05x10^6.
As our CAR-screening platform enabled the analysis of activating signal modules, it encouraged us to also evaluate inhibitory signal modules that change the CAR mode of action. Such an inhibitory CAR (iCAR) can be used in logic gates with an activating CAR to interfere with T cell stimulation. By selecting appropriate target antigens for iCAR and CAR, this novel application aims to improve the selectivity towards tumor cells, and it could readily be studied using our screening platform. Accordingly, we tested CD19-specific iCARs with inhibitory PD-1 signal module for their suppressive effect on reporter gene activation. In logic gates with CAR or TCR stimulation, a decrease of NF-κB and NFAT signals was only observed when activating and inhibitory receptors were forced into spatial proximity. These results were further verified by experiments with primary T cells.
In conclusion, our reporter cell system is attractive as a platform technology because it is independent of testing in primary T cells, exportable between laboratories, and scalable to enable small- to large-scale screening campaigns of CAR libraries. The pre-selection of appropriate lead candidates with optimal extracellular and intracellular modules can reduce the number of CAR constructs to be investigated in further in vitro and in vivo studies with primary T cells. We are therefore confident that our CAR-screening platform based on NF-κB/NFAT reporter cells will be useful to accelerate translational research by facilitating the evaluation of CARs with novel design parameters.
Immunologische Gedächtnisreaktionen sind die Grundlage um wiederkehrende Erreger schnell und effizient zu bekämpfen und um einen Impfschutz zu generieren. Das zellvermittelte Gedächtnis wird unter anderem durch CD8 Gedächtnis-T-Zellen aufgebaut, welche vor allem im Kontext von Immunreaktionen gegen intrazellulärer Erreger vonnöten sind, um bei Reinfektion mit den Erregerstämmen einen schnellen Schutz zu gewährleisten. Ein detailliertes Wissen über die Generierung, Kontrolle und Reaktivierung der Gedächtniszellen ist nützlich, um Gedächtnisreaktionen verstehen und lenken zu können. Durch die Entdeckung des TZR und CD28 wurden Meilensteine für das Verständnis der T-Zellaktivierung gelegt und die Grundlage geschaffen, CD8 Gedächtnisreaktionen zu verstehen. Auch wenn für primäre Immunreaktionen die „2-Signal-Theorie“ lange als erwiesen gilt, so blieb die Rolle der Kostimulation für Gedächtnisreaktionen lange umstritten. In dieser Arbeit wurden verschiedene methodische Herangehensweisen verwendet, mit denen durchgehend die Bedeutung von CD28 vermittelter Kostimulation für immunologische CD8 T-Zell-Gedächtnisreaktionen nachgewiesen wurde. CD28 blockierende Antikörper und CD28 induzierbar deletierbare Mauslinien wurden im Modellinfektionssystem mit Ovalbumin produzierenden Listeria monocytogenes zur Analyse der Primär- und Sekundärantworten verwendet. Mit diesen Methoden konnte eine Beeinträchtigung der Expansion von CD8 Gedächtniszellen in Abwesenheit von CD28 bewiesen werden. Weiterhin werden Effektorfunktionen wie Degranulation und Produktion von IFN-γ während der Sekundärinfektion in Abwesenheit von Kostimulation eingeschränkt. Mit Hilfe von Experimenten, bei denen CD28 suffizienten Mäusen eine geringe Anzahl an naiven, antigenspezifischen, CD28 deletierbaren CD8 T-Zellen transferiert wurden, wurde die Bedeutung der Kostimulation für die Expansion von Gedächtniszellen bestätigt, jedoch konnte überraschenderweise auch ein Anstieg der Effektorfunktionen in Abwesenheit von CD28 sowohl während der Primär- als auch der Sekundärantwort dokumentiert werden. Diese zur globalen Blockade bzw. Deletion widersprüchlichen Ergebnisse lassen eine Beteiligung anderer CD28 abhängiger Zelltypen an der Induktion der Effektorfunktionen der CD8 T-Zellen plausibel erscheinen, wie zum Beispiel Einflüsse von T-Helferzellen, welche die Effektorfunktionen positiv verstärken, solange sie selbst Kostimulationssignale empfangen können. Weiterhin konnte gezeigt werden, dass sich Gedächtniszellen an den CD28 defizienten Phänotyp – eine CD28 intakte immunologische Umgebung vorausgesetzt – adaptieren können, wenn ausreichend Zeit nach Deletion und vor Sekundärinfektion verstreichen konnte.
Peritonitis is a common disease in man, frequently caused by fungi, such as Candida albicans; however, in seldom cases opportunistic infections with Saccharomyces cerevisiae are described. Resident peritoneal macrophages (prMΦ) are the major group of phagocytic cells in the peritoneum. They express a broad range of surface pattern recognition receptors (PRR) to recognize invaders. Yeast infections are primarily detected by the Dectin-1 receptor, which triggers activation of NFAT and NF-κB pathways.
The transcription of the Nfatc1 gene is directed by the two alternative promoters, inducible P1 and relatively constitutive P2 promoter. While the role of P1-directed NFATc1α-isoforms to promote survival and proliferation of activated lymphocytes is well-established, the relevance of constitutively generated NFATc1β-isoforms, mainly expressed in resting lymphocytes, myeloid and non-lymphoid cells, remains unclear. Moreover, former work at our department indicated different roles for NFATc1α- and NFATc1β-proteins in lymphocytes.
Our data revealed the functional role of NFATc1 in peritoneal resident macrophages. We demonstrated that the expression of NFATc1β is required for a proper immune response of prMΦ during fungal infection-induced acute peritonitis. We identified Ccl2, a major chemokine produced in response to fungal infections by prMΦ, as a novel NFATc1 target gene which is cooperatively regulated through the NFAT- and canonical NF-κB pathways. Consequently, we showed that NFATc1β deficiency in prMΦ results in a decreased infiltration of inflammatory monocytes, leading to a delayed clearance of peritoneal fungal infection.
We could further show that the expression of NFATc1β-isoforms is irrelevant for homeostasis of myeloid and adaptive immune system cells and that NFATc1α- (but not β-) isoforms are required for a normal development of peritoneal B1a cells. In contrast to the situation in myeloid cells, NFATc1β deficiency is compensated by increased expression of NFATc1α-isoforms in lymphoid cells. As a consequence, NFATc1ß is dispensable for activation of the adaptive immune system.
Taken together our results illustrate the redundancy and indispensability of NFATc1-isoforms in the adaptive and innate immune system, indicating a complex regulatory system for Nfatc1 gene expression in different compartments of the immune system and likely beyond that.
Toll-like receptors (TLR) are pattern recognition receptors (PRR) by which macrophages (MØ) sense pathogen-associated molecular patterns (PAMPs). The recognition of lipopolysaccharide (LPS), the PAMP of gram negative bacteria, by TLR4 triggers signaling cascades and leads to the pro-inflammatory activation of the cells. A recent quantitative and kinetic analysis of the phosphoproteome of LPS-activated primary macrophages highlighted the cytoskeleton as a cell compartment with an enriched protein phosphorylation. In total 44 cytoskeleton-associated proteins were regulated by this post-translational modification and thus might be involved in the control and regulation of key macrophage functions like spreading, motility and phagocytosis.
To investigate the control of cytoskeleton-associated cell functions by TLR4 activation, we first developed a method to quantitatively measure the spreading response of bone marrow MØ after stimulation with LPS. Fluorescence microscopy was used for cell imaging and visualisation of the MØ contact area. In collaboration with the Fraunhofer Institute Erlangen, we developed and validated a software tool for the semi-automated segmentation and quantitation of MØ fluorescence microscopy data, which allowed fast, robust and objective image analysis. Using this method, we observed that LPS caused time-dependent spreading, which was detectable after 1-2 h and maximal after 24 h. Next, the impact of genetic or pharmacological inhibition of known TLR signaling components was investigated. Deficiency in the adapter protein MYD88 strongly reduced spreading activity at the late time points, but had no impact early after LPS-stimulation. A similar effect was observed upon pharmacological inhibition of ERK1/2 signaling, indicating that ERK1/2 mediates MYD88-dependent MØ spreading. In contrast, MØ lacking the MAPK p38 were impaired in the initial spreading response but responded normally 8-24 h after stimulation. The genetic deletion of the MAPK phosphatases DUSP1 and DUSP16 resulted in impaired late spreading, corroborating the essential role for functional MAPK signaling in TLR4-driven MØ spreading.
To identify the contribution of other cytoskeletal phosphoproteins to MØ spreading, siRNA knockdown of selected candidate genes in primary murine MØ was employed and combined with automated quantitative image analysis. These experiments revealed a functional role for the Myosins MYO1e and MYO1f in MØ spreading. These motor proteins are strongly phosphorylated in LPS-activated MØ. Because of their ability to simultaneously bind to actin filaments and cell membrane or other proteins, we investigated their role in phagocytosis, cytokine production and antigen presentation. Phagocytosis and killing of bacteria were not affected in Myo1e-/- macrophages. However, MYO1e plays a role in chemokine secretion and antigen presentation processes. MCP1 (CCL2) release was selectively increased in Myo1e-deficient MØ and dendritic cells (DC), while cytokine secretion was unaffected. Furthermore, macrophages and DCs lacking MYO1e showed lower levels of MHC-II on the cell surface. However, mRNA levels of CCL2 and of MHC-II were unaltered. These data suggest a role for MYO1e in the transport of selected chemokines and of MHC-II molecules to the cell surface. MHC-II-restricted antigen presentation assays revealed an impaired capacity of macrophages and DC lacking MYO1e to stimulate antigen-specific T cells, suggesting that the reduced MHC-II expression is functionally relevant.
Taken together, in this study first a quantitative image analysis method was developed which allows the unbiased, robust and efficient investigation of the macrophage spreading response. Combination of this method with siRNA knockdown of selected cytoskeleton-associated phosphoproteins led to the identification of MYO1e and MYO1f as regulators of macrophage spreading. Furthermore, we identified MYO1e in MØ and DC to be essential for the intracellular transport of CCL2 and MHC-II to the cell surface and for optimal stimulation of antigen-specific CD4 T cells.
Neisseria gonorrhoeae is a human-specific pathogen that causes gonorrhea. It is defined as a super bacterium by the WHO due to the emergence of gonococci that are resistant to a variety of antibiotics and a rapidly increasing infection incidence. Genome-wide investigation of neisserial gene essentiality and novel virulence factors is urgently required in order to identify new targets for anti-neisserial therapeutics. To identify essential genes and new virulence factors, a high-density mutant library in N. gonorrhoeae MS11 was generated by in vitro transposon mutagenesis. The transposon library harbors more than 100,000 individual mutants, a density that is unprecedented in gonococcal research. Essential genes in N. gonorrhoeae were determined by enumerating frequencies of transposon insertion sites (TIS) with Illumina deep sequencing (Tn-seq). Tn-seq indicated an average distance between adjacent TIS of 25 bp. Statistical analysis unequivocally demonstrated 781 genes that were significantly depleted in TIS and thus are essential for Neisseria survival. A subset of the genes was experimentally verified to comprise essential genes and thus support the outcome of the study. The hereby identified candidate essential genes thus may constitute excellent targets for the development of new antibiotics or vaccines.
In a second study, the transposon mutant library was applied in a genome-scale “negative-selection strategy” to identify genes that are involved in low phosphate-dependent invasion (LPDI). LPDI is dependent on the Neisseria porin subtype PorBIA which acts as an epithelial cell invasin in absence of phosphate and is associated with severe pathogenicity in disseminated gonococcal infections (DGI). Tn-seq demonstrated 98 genes, which were involved in adherence to host cells and 43 genes involved in host cell invasion. E.g. the hypothetical protein NGFG_00506, an ABC transporter ATP-binding protein NGFG_01643, as well as NGFG_04218 encoding a homolog of mafI in N. gonorrhoeae FA1090 were experimentally verified as new invasive factors in LPDI. NGFG_01605, a predicted protease, was identified to be a common factor involved in PorBIA, Opa50 and Opa57-mediated neisserial engulfment by the epithelial cells. Thus, this first systematic Tn-seq application in N. gonorrhoeae identified a set of previously unknown N. gonorrhoeae invasive factors which demonstrate molecular mechanisms of DGI.