Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Doctoral Thesis (4)
Language
- German (4)
Keywords
- Kraniosynostose (2)
- Craniosynostosis (1)
- Danio rerio (1)
- Genetik (1)
- Knochenbildung (1)
- Koronarnahtsynostose (1)
- Kraniometrie (1)
- Kraniometrische Vermessung (1)
- Lagerungsplagiozephalus (1)
- Model Organism (1)
Bei seiner Geburt und innerhalb der ersten Lebensmonate ist der Säuglingsschädel verhältnismäßig leicht verformbar. Dies birgt die Gefahr einer unphysiologischen Verformung durch externe modellierende Kräfte. Die auf diesem Weg am häufigsten verursachte Deformation ist der Lagerungsplagiozephalus (LP).
In der vorliegenden Studie wurden 455 Säuglinge, die zunächst in drei unterschiedliche Gruppen bezüglich ihrer Kopfform unterteilt worden sind, hinsichtlich verschiedener Parameter miteinander verglichen.
Anhand des U-Heftes und einem speziell für die craniofaciale Sprechstunde des CFCW Würzburg angefertigten Fragebogen wurden Prädiktoren für die Entwicklung eines LP evaluiert. Die herausgearbeiteten prädisponierenden Faktoren waren das männliche Geschlecht, Frühgeburtlichkeit, eine unphysiologische Geburtslage, Notkaiserschnitt oder geburtshilfliche Maßnahmen, verminderte Geburtsgröße, vermindertes Geburtsgewicht und ein längerer Krankenhausaufenthalt im Anschluss an die Geburt. Als prognostisch günstiger Faktor hinsichtlich der Entwicklung einer physiologischen Schädelform konnte in der vorliegenden Studie eine längere Stilldauer bestätigt werden. Dies galt ebenso für Gabe von Flaschennahrung aus alternierenden Positionen.
Hinsichtlich der präventiven Aufklärung von Eltern Neugeborener liefert die vorliegende Studie einige wichtige Ansätze. Sie untermauert jedoch auch den hohen Bedarf an weiterer Forschung bezüglich prädisponierender Faktoren für die Entwicklung des LP. Dies kann dazu beitragen die Prävention und Früherkennung eines LP mittels flächendeckender qualitativ hochwertiger Aufklärung stetig zu verbessern und notwendig gewordene Behandlungen durch standardisierte Therapieempfehlungen zu optimieren.
Die Entwicklung des Schädeldachs beginnt beim Menschen bereits in der frühen Embryogenese und ist erst im Erwachsenenalter abgeschlossen. Das Wachstum der Schädelknochen muss sich während der Entwicklung fortwährend dem Gehirnwachstum anpassen. An den Stellen, wo zwei Schädelknochen aufeinandertreffen, formen sich Schädelnähte, die aus mesenchymalem Bindegewebe bestehen und als Wachstumsfugen des Schädels dienen. Tritt eine frühzeitige Verknöcherung innerhalb einer oder mehrerer Schädelnähte auf, spricht man von einer Kraniosynostose. Als Konsequenz wird ein weiteres Knochenwachstum verhindert, sodass sich das Neurokranium in dieser Region nicht dem expansiven Wachstum des Gehirns anpassen kann. Dies geht in der Regel mit einem kompensatorischen Wachstum des Schädels und infolgedessen mit kraniofazialen Dysmorphien und einem erhöhten intrakraniellen Druck einher. Klinische Studien und Forschungen an Modellorganismen konnten bereits eine Vielzahl an Genen mit der Entstehung von Kraniosynostosen assoziieren, darunter die Transkriptionsfaktoren TCF12 und TWIST1. Beim Menschen sind heterozygote Mutationen in TCF12 und TWIST1 mit Kraniosynostosen der Koronarnaht assoziiert. Bei Mäusen hingegen führt eine heterozygote Tcf12 Mutation nur in Kombination mit einer heterozygoten Twist1 Mutation zu Fusionen der Koronarnaht.
Der Zebrabärbling (Danio rerio, überwiegend auch Zebrafisch genannt) weist eine bemerkenswerte Ähnlichkeit bezüglich der Anatomie und Morphologie des Schädeldachs zum Menschen auf. Um die genaue Funktion von TCF12 bei der Ausbildung der Schädelnähte zu untersuchen, wurde im Rahmen dieser Arbeit der Zebrafisch als in vivo Modell für die Entstehung tcf12-induzierter Kraniosynostosen etabliert. Zu Beginn der Arbeit wurde das Expressionsmuster von tcf12 über die Entwicklung hinweg analysiert. Ein besonderer Fokus lag dabei auf einem Expressionsnachweis während der Entwicklung der Schädelplatten und der Schädelnähte. Ein erster Expressionsnachweis von tcf12 mittels PCR-Analysen und Whole-mount RNA in-situ Hybridisierungen zeigte eine breite Expression von tcf12 ab dem 1-3 Somiten Stadium an. Für tiefergehende in vivo Analysen wurden im Zuge dieser Arbeit tcf12:EGFP Reportergenlinien generiert. Mit diesen gelang ein Nachweis der tcf12 Expression entlang der Wachstumsfronten der Schädelplatten, innerhalb der Schädelnähte sowie im Periost und der Dura mater.
Mit den tcf12:EGFP Fischen als Referenz wurde in weiterführenden Experimenten die Aktivität drei hochkonservierter CNEs (engl. conserved non-coding elements) in vivo im Zebrafisch untersucht. Zwei der CNEs konnten als tcf12 Enhancer verifiziert werden, die eine Genexpression während der Neurogenese des zentralen Nervensystems (ZNS) steuern. Die beiden Enhancer-Elemente zeichnen sich durch eine hohe Konservierung vom Menschen bis hin zum Zebrafisch aus.
Aufgrund der unterschiedlichen Sensitivität gegenüber einem Funktionsverlust von TCF12 und TWIST1 in Mensch und Maus sollte die Auswirkung eines Knockouts der orthologen Gene auf die Entwicklung der Schädelnähte des Zebrafisches untersucht werden. Mittels CRISPR/Cas9 wurden verschiedene Knockout-Linien für die Gene tcf12, twist1a und twist1b generiert. Analysen der Knockoutmutanten zeigten, dass ein heterozygoter Verlust von tcf12 und twist1b in seltenen Fällen zu partiellen Fusionen der Koronarnähte im Zebrafisch führt. Des Weiteren konnte bei tcf12 und twist1b Einzel- und Doppelmutanten ein abnormes Wachstum der Schädelplatten im Bereich der Suturen beobachtet werden. Die Expressionsstudien und die Analysen der Knockoutmutanten deuten auf eine Regulation von TCF12 bei der Differenzierung der Stammzellen sowie der Proliferation der Osteoblasten innerhalb der Schädelnähte hin.
Um die Auswirkung von TCF12 Mutationen auf funktioneller Ebene zu untersuchen wurden im Verlauf dieser Arbeit Luciferase-Reporter Assays durchgeführt. Anhand dieser konnte nachgewiesen werden, dass Mutationen, die die basic helix-loop-helix (bHLH)-Domäne beeinträchtigen, die Transaktivierungsfähigkeit von TCF12 aufheben. Co-Transfektions-Experimente mit TWIST1 offenbarten eine Regulation der Transaktivierung von TCF12 durch TWIST1, sowohl im Menschen, als auch im Zebrafisch. Im Rahmen dieser Arbeit konnten die genauen Expressionsorte von TCF12 während der Morphogenese des Schädeldachs nachgwiesen und die Funktion von TCF12 und seinem Interaktionspartner TWIST1 bei der Entstehung von Kraniosynostosen weiter aufgeklärt werden.
Eine prämature Kraniosynostose bezeichnet eine vorzeitige Verknöcherung einer oder mehrerer Schädelnähte. Ihre Entstehung ist von multiplen Faktoren abhängig. So scheinen genetische Faktoren, das Rauchen der Mutter oder die Einnahme bestimmter Medikamente in der Schwangerschaft, Schilddrüsen- und Stoffwechselerkrankungen einen Einfluss zu haben. Die Koronarnahtsynostose stellt mit einer Inzidenz von 20 % die zweithäufigste Form der prämaturen Synostosen dar. Bei dem vorzeitigen unilateralen Nahtverschluss kommt es zur Entwicklung eines anterioren Plagiozephalus. Bei einer beidseitigen Koronarnahtsynostose entsteht ein brachy-turrizephaler Schädel. Die frühzeitige Diagnose ist wichtig, damit die betroffenen Kinder frühestmöglich in ein optimales Betreuungs- und Therapiekonzept eingebunden werden können. Bei Einzelnahtsynostosen sind meist bereits die untersuchten klinischen Parameter zur Diagnosestellung ausreichend und sollten um eine Sonographie und Röntgenaufnahmen in zwei Ebenen erweitert werden. Eine Indikation zur operativen Intervention stellt der Nachweis einer pathologischen intrakraniellen Drucksteigerung dar. Das Frontoorbitale Advancement ist die Operationstechnik der Wahl bei der Koronarnahtsynostose.
Ziel der vorliegenden Dissertationsarbeit war die Weiterentwicklung bestehender kephalometrischer und kraniometrischer Messverfahren nach Slomic et al.. Dabei sollten der operative Therapieerfolg und der weitere Verlauf hinsichtlich einer Rezidivgefahr bewertet werden. In der vorliegenden Arbeit wurden Röntgenbilder des Carniofacialen Centrums Würzburg kraniometrisch ausgewertet. Das Patient*innenkollektiv wurde in zwei Gruppen untergliedert, und zwar Patient*innen mit einseitiger, nonsyndromaler Koronarnahtsynostose und Patient*innen mit beidseitiger, syndromaler Koronarnahtsynostose. Zur statistischen Auswertung erfolgte in beiden Patient*innengruppen die Untersuchung der Röntgenbilder zu vier festgelegten Zeitpunkten (00, 01, 02, 03). Die statistische Auswertung erfolgte mit dem Programm SPSS. Untersucht wurden der Gruppeneffekt und der Zeiteffekt hinsichtlich der 13 Strecken (LI, BRSt, BRPa, NO, PIS; SN, PIN, HI, NSt, SBR, PIBR, WI, AS) und fünf Winkel (ANS, SNBR, PIBRPa, BRNST, PISN). Da es in der Literatur eine unzureichende Erfassung von Strecken und Winkeln gibt, die die Veränderungen des Schädelwachstums erfassen, wurden die Strecken BRSt, BRPa, NSt, PIBR und AS sowie die fünf oben genannten Winkel neu definiert und entwickelt. Für die Röntgenzeitpunkte 00 und 01 zeigten sich für die Strecken und Winkel LI, BRSt, HI, NSt, SBR, PIBR, WI, PIBRPa und BRNST signifikante Unterschiede. Dies kann als OP-Erfolg gewertet werden. Der Kopf wird intraoperativ flacher und schmäler. Im weiteren Verlauf zeigte sich bei den Strecken BRSt, HI, PIBR und WI sowie bei den Winkeln PIBRPa und BRNST ein signifikanter Unterschied. Der Kopf wächst rezidivierend turrizephal. Im weiteren Untersuchungszeitraum wurde lediglich für die Strecken BRPa und AS ein signifikanter Unterschied ausgemacht. Zum einen Anzeichen eines im Wachstumsverlauf einsetzenden Rezidivs. Der Kopf wird wieder turrizephaler (BRPa). Zum anderen ist es Ausdruck einer beginnenden Mittelgesichtshypoplasie (AS). Weiterhin konnte über die Strecken SBR und PIBR gezeigt werden, dass Patient*innen mit beidseitiger Synostose eine turrizephalere Kopfform als die Vergleichsgruppe mit einseitiger Synostose aufweisen. Auffällig war außerdem das Ergebnis der beiden Winkel ANS und SNBR. Sie belegen, dass Patient*innen mit beidseitiger Synostose und Syndrom eine Mittelgesichtshypoplasie aufweisen. Als Fazit lässt sich sagen, dass die Strecken LI, BRSt, BRPa, HI, SBR, WI und AS sowie die Winkel SNBR, PIBRPa und ANS für weitere Untersuchungen geeignet scheinen.