Refine
Has Fulltext
- yes (4)
Is part of the Bibliography
- yes (4)
Document Type
- Doctoral Thesis (3)
- Master Thesis (1)
Keywords
Institute
Point-spread function engineering for single-molecule localization microscopy in brain slices
(2022)
Single-molecule localization microscopy (SMLM) is the method of choice to study biological specimens on a nanoscale level. Advantages of SMLM imply its superior specificity due to targeted molecular fluorescence labeling and its enhanced tissue preservation compared to electron microscopy, while reaching similar resolution. To reveal the molecular organization of protein structures in brain tissue, SMLM moves to the forefront: Instead of investigating brain slices with a thickness of a few µm, measurements of intact neuronal assemblies (up to 100 µm in each dimension) are required. As proteins are distributed in the whole brain volume and can move along synapses in all directions, this method is promising in revealing arrangements of neuronal protein markers. However, diffraction-limited imaging still required for the localization of the fluorophores is prevented by sample-induced distortion of emission pattern due to optical aberrations in tissue slices from non-superficial planes. In particular, the sample causes wavefront dephasing, which can be described as a summation of Zernike polynomials. To recover an optimal point spread function (PSF), active shaping can be performed by the use of adaptive optics. The aim of this thesis is to establish a setup using a deformable mirror and a wavefront sensor to actively shape the PSF to correct the wavefront phases in a super-resolution microscope setup. Therefore, fluorescence-labeled proteins expressed in different anatomical regions in brain tissue will be used as experiment specimen. Resolution independent imaging depth in slices reaching tens of micrometers is aimed.
This thesis addresses the identification and characterization of spin states in optoelectronic materials and devices using multiple spin-sensitive techniques. For this purpose, a systematic study focussing on triplet states as well as associated loss pathways and excited state kinetics was carried out. The research was based on comparing a range of donor:acceptor systems, reaching from organic light emitting diodes (OLEDs) based on thermally activated delayed fluorescence (TADF) to organic photovoltaics (OPV) employing fullerene and multiple non-fullerene acceptors (NFAs). By developing new strategies, e.g., appropriate modeling, new magnetic resonance techniques and experimental frameworks, the influence of spin states in the fundamental processes of organic semiconductors has been investigated. Thereby, the combination of techniques based on the principle of electron paramagnetic resonance (EPR), in particular transient EPR (trEPR) and optically detected magnetic resonance (ODMR), with all-optical methods, such as transient electroluminescence (trEL) and transient absorption (TA), has been employed. As a result, excited spin states, especially molecular and charge transfer (CT) states, were investigated in terms of kinetic behavior and associated pathways, which revealed a significant impact of triplet states on efficiency-limiting processes in both optoelectronic applications.
Die Fluoreszenzmikroskopie ist eine vielseitig einsetzbare Untersuchungsmethode für biologische Proben, bei der Biomoleküle selektiv mit Fluoreszenzfarbstoffen markiert werden, um sie dann mit sehr gutem Kontrast abzubilden. Dies ist auch mit mehreren verschiedenartigen Zielmolekülen gleichzeitig möglich, wobei üblicherweise verschiedene Farbstoffe eingesetzt werden, die über ihre Spektren unterschieden werden können.
Um die Anzahl gleichzeitig verwendbarer Färbungen zu maximieren, wird in dieser Arbeit zusätzlich zur spektralen Information auch das zeitliche Abklingverhalten der Fluoreszenzfarbstoffe mittels spektral aufgelöster Fluoreszenzlebensdauer-Mikroskopie (spectrally resolved fluorescence lifetime imaging microscopy, sFLIM) vermessen. Dazu wird die Probe in einem Konfokalmikroskop von drei abwechselnd gepulsten Lasern mit Wellenlängen von 485 nm, 532nm und 640nm angeregt. Die Detektion des Fluoreszenzlichtes erfolgt mit einer hohen spektralen Auflösung von 32 Kanälen und gleichzeitig mit sehr hoher zeitlicher Auflösung von einigen Picosekunden. Damit wird zu jedem detektierten Fluoreszenzphoton der Anregungslaser, der spektrale Kanal und die Ankunftszeit registriert. Diese detaillierte multidimensionale Information wird von einem Pattern-Matching-Algorithmus ausgewertet, der das Fluoreszenzsignal mit zuvor erstellten Referenzpattern der einzelnen Farbstoffe vergleicht. Der Algorithmus bestimmt so für jedes Pixel die Beiträge der einzelnen Farbstoffe.
Mit dieser Technik konnten pro Anregungslaser fünf verschiedene Färbungen gleichzeitig dargestellt werden, also theoretisch insgesamt 15 Färbungen. In der Praxis konnten mit allen drei Lasern zusammen insgesamt neun Färbungen abgebildet werden, wobei die Anzahl der Farben vor allem durch die anspruchsvolle Probenvorbereitung limitiert war. In anderen Versuchen konnte die sehr hohe Sensitivität des sFLIM-Systems genutzt werden, um verschiedene Zielmoleküle voneinander zu unterscheiden, obwohl sie alle mit demselben Farbstoff markiert waren. Dies war möglich, weil sich die Fluoreszenzeigenschaften eines Farbstoffmoleküls geringfügig in Abhängigkeit von seiner Umgebung ändern. Weiterhin konnte die sFLIM-Technik mit der hochauflösenden STED-Mikroskopie (STED: stimulated emission depletion) kombiniert werden, um so hochaufgelöste zweifarbige Bilder zu erzeugen, wobei nur ein einziger gemeinsamer STED-Laser benötigt wurde.
Die gleichzeitige Erfassung von mehreren photophysikalischen Messgrößen sowie deren Auswertung durch den Pattern-Matching-Algorithmus ermöglichten somit die Entwicklung von neuen Methoden der Fluoreszenzmikroskopie für Mehrfachfärbungen.
Rotationsdriftspektroskopie
(2023)
Die wachsende Verfügbarkeit von magnetischen Nanopartikeln (MNPs) mit funktionalisierten
Partikeloberflächen eröffnet weitreichende Möglichkeiten für chemische, biologische und klinische
Analysemethoden. Durch Funktionalisierung kann eine gezielte Interaktion mit Molekülen bewirkt
werden, die im Allgemeinen auch die Beweglichkeit der MNPs verändern. Methoden zur
Charakterisierung von MNPs wie bspw. AC-Suszeptometrie, Magnetorelaxometrie (MRX) oder
Magnetic Particle Spectroscopy (MPS) können diese Änderung der Beweglichkeit bei MNPs
messen, wenn es sich um MNPs handelt, deren magnetisches Moment im Partikel fixiert ist. Damit
ist mit funktionalisierten MNPs indirekt auch die spezifische Messung von Molekülkonzentrationen
möglich. MNPs können zudem in biokompatibler Form hergestellt werden und sind dadurch auch
als in-vivo Marker einsetzbar. Das 2005 das erste Mal veröffentlichte Magnetic Particle Imaging
(MPI) kann als ein mittels Gradientenfeldern um die räumliche Kodierung erweitertes MPS
betrachtet werden. Dank biokompatibler MNPs handelt es sich dabei um eine in-vivo-taugliche,
nicht-invasive Bildgebungsmethode. Mit funktionalisierten MNPs als Marker ist damit im Prinzip
auch molekulare Bildgebung möglich, die durch Detektion der beteiligten Moleküle (Biomarker)
Stoffwechselprozesse räumlich abbilden kann. Im Vergleich zur Bildgebung von Gewebe- und
Knochenstrukturen lassen sich die diagnostischen Möglichkeiten durch molekulare Bildgebung
erheblich erweitern.
Rotationsdriftspektroskopie (Rotational Drift Spectroscopy, RDS) ist eine in dieser Arbeit
entwickelte Methode für die induktive Messung der Beweglichkeit von MNPs in flüssiger
Suspension. Es verwendet die Rotationsdrift von MNPs in rotierenden magnetischen Feldern als
Grundlage und bietet das Potential die Änderungen der Beweglichkeit von MNPs mit einer
Empfindlichkeit messen zu können, welche potentiell um mehrere Größenordnungen höher sein
kann als mit den oben erwähnten Verfahren. Die vorliegende Arbeit konzentriert sich auf die
Verwendbarkeit dieses Effekts als Spektroskopiemethode. Die Eigenschaften des RDS-Signals sind
jedoch auch als Grundlage für räumliche Kodierung vielversprechend. In weiterführenden Projekten
soll daher auch die Entwicklung von Rotationsdriftbildgebung (Rotating Drift Imaging, RDI) als ein
nicht-invasives Verfahren für molekulare Bildgebung angestrebt werden.
Der Grundgedanke von RDS entlehnt sich aus einem in 2006 veröffentlichten Sensordesign
basierend auf magnetische Mikropartikel in einem schwachen rotierenden Magnetfeld. Das
rotierende Magnetfeld ist dabei so schwach gewählt, dass sich das Partikel aufgrund der viskosen
Reibung nicht mehr synchron mit dem externen Feld drehen kann. Die Frequenz der resultierenden
asynchronen Rotationsdrift liegt unterhalb der Frequenz des externen Rotationsfelds und ist
Abhängig von der viskosen Reibung. Aufgrund dieser Abhängigkeit können Änderungen im
Reibungskoeffizienten des Partikels über Änderungen in der Rotationsdriftfrequenz gemessen
werden.
RDS zielt darauf ab, diese Rotationsdrift bei suspendierten MNPs über deren
makroskopische Magnetisierung messen zu können. Damit wird u.a. auch die nicht-invasive
Messung von MNPs innerhalb opaker biologischer Proben möglich. MNP-Suspensionen sind
großzahlige Nanopartikel-ensembles und können nicht wie ein einzelnes Mikropartikel gemessen
werden. Für die induktive Messung ist vor dem Start eine Ausrichtung aller magnetischen Momente
nötig, da sich deren makroskopische Magnetisierung andernfalls zu Null addiert. Aufgrund von
Rotationsdiffusion bleibt diese Ausrichtung nur eine begrenzte Zeit bestehen, so dass auch die
eigentliche Messung des RDS-Signals nur eine begrenzte Zeit möglich ist. Diese Ausrichtung wurde
in den ersten Experimenten durch einen kurzen Magnetfeldpuls erzeugt. In der Empfangsspule ist
die Induktion durch das Rotationsfeld typischer Weise um mehrere Größenordnungen höher als das
zu erwartende Signal und muss durch einen Tiefpass unterdrückt werden. In diesem Tiefpassfilter
ruft jedoch die Einkopplung des Anfangspulses eine Pulsantwort hervor, die ebenso mehrere
Größenordnungen des zu erwartenden Signals betragen kann und ähnlich langsam wie typische
Signale abklingt. Die Unterdrückung dieser Pulsantwort stellte in den ersten Experimenten die
größte Hürde da. Der erste Aufbau hatte eine Relaisschaltung zur Pulsunterdrückung und resultierte
in einer Totzeit von 3 ms zwischen Anfangspuls und Start der Messung. Aufgrund dieser Totzeit
waren die ersten Messungen auf größere Agglomerate und Sedimente von MNPs beschränkt, da nur
in diesem Fall eine hinreichend lange Zerfallsdauer der Probenmagnetisierung vorlag. Das
Verhalten derartiger Partikelsysteme ist jedoch aufgrund von mechanischer und magnetischer
Interpartikelwechselwirkung vergleichsweise komplex und theoretisch schwer modellierbar. Das
primäre Zielsystem für RDS hingegen, Eindomänenpartikel mit im Partikel fixierter Magnetisierung
und Punktsymmetrie bzgl. des Reibungstensors, erlaubt die Aufstellung einer parametrisierten
Funktion für den Signalverlauf. Es ermöglicht somit aufgrund der besseren Berechenbarkeit eine
solidere Auswertung des RDS-Signals. Um Eindomänenpartikel in wässriger Suspension mit
typischen Partikeldurchmessern um 100 nm messen zu können ist eine Verkürzung der Totzeit auf
mindestens 1/10 erforderlich.
Prinzipiell kann diese Problematik durch die Verwendung schneller Halbleiterschalter in
Verbindung mit einer präzise abstimmbaren induktiven Entkopplung des Spulensystems gemindert
werden. Simulationen des RDS-Signals für verschiedene RDS-Sequenzen zeigen jedoch noch zwei
weitere Möglichkeiten auf, die ohne aufwändigen Eingriffe in der Hardware auskommen. Zum
einen kann durch orthogonales Frequenzmischen mit geeignetem Frequenz- und Phasenverhältnis
eine Ausrichtung der magnetischen Momente bewirkt werden. Da die benötigten Frequenzen
vollständig im Sperrband des Tiefpassfilters liegen können, lässt sich damit die Pulsantwort bei
hinreichend „weichem“ Umschalten zwischen der Polarisierungssequenz und der RDS-Sequenz
vollständig vermeiden. Darüber hinaus zeigt sich, dass es bei Anwesenheit eines schwachen
Offsetfelds (< 10 % der Rotationsfeldamplitude) zu einer Ausrichtung der magnetischen Momente
kommt, wenn das magnetische Rotationsfeld seine Richtung ändert und diese Änderung nicht
abrupt erfolgt, sondern das Rotationsfeld übergangsweise in ein linear oszillierendes Feld übergeht.
Hingegen wird die Wirkung des Offsetfelds durch das Rotationsfeld vor und nach dem Wechsel
nahezu vollständig neutralisiert, so dass damit das Störsignale generierende Schalten eines
Offsetfelds ersetzt werden kann. Es ist auf diese Weise nicht möglich, Echosequenzen zu erzeugen,
da hier bei der für Echosequenzen benötigten Richtungsumkehr des Rotationsfelds die zuvor
aufgeprägte Phasenverteilung durch das Offsetfeld zerstört wird und somit anstelle einer
Signalechogenerierung eine neue RDS-Messung gestartet wird. Obwohl es Echosequenzen mit
Anfangspuls erlauben, mehr MNP Parameter zu messen, bietet dieser Ansatz dennoch
entscheidende Vorteile. So ergibt sich eine massive Vereinfachung der Hardware und es sind bei
gleicher Rotationsfrequenz deutlich höhere Wiederholraten möglich.
Die Vermeidung von Schaltvorgängen durch die Verwendung von Offsetfeldern ermöglicht
es, mit dem ursprünglichem Aufbau auch Partikelsysteme zu untersuchen, deren Relaxationszeit
weit unter 3 ms liegt. Hier zeigt sich, dass sich für unterschiedliche Partikelsysteme teils sehr
charakteristische Signalmuster ergeben. Diese lassen sich grob in drei Kategorien einteilen. Die
erste Kategorie sind suspendierte Eindomänenpartikel mit einer nicht vernachlässigbaren
Relaxationszeit. Hier handelt es sich um das bevorzugte Zielsystem für RDS, das durch die
Langevin-Gleichung beschrieben werden kann. Die zweite Kategorie sind Partikelsysteme, bei
denen die Relaxationsdauer vernachlässigbar ist. In diesem Fall kann der Signalverlauf mit der
Langevinfunktion beschrieben werden. Die dritte Kategorie umfasst alle übrigen Partikelsysteme,
insbesondere Suspensionen von MNP-Clustern, die u.a. aufgrund von Interpartikelwechselwirkung
komplexe Signalverläufe ergeben, die sich praktisch nicht berechnen lassen. Spektroskopische
Untersuchungen sind damit dennoch durch das Anlegen entsprechender Referenzdatenbanken
möglich (Fingerprinting). Multiparametrisches RDS, d.h. die Wiederholung der Messung für z.B.
unterschiedliche Amplituden oder unterschiedliche Viskositäten des Suspensionsmediums, erzeugt
aufgrund mehrerer nichtlinearer Abhängigkeiten massive Unterschiede im resultierenden
multidimensionalen Datensatz. Das verspricht die Erreichbarkeit hoher spektroskopischer
Trennschärfen bei geeigneter Partikel- und Sequenzoptimierung.
Die Simulationen und experimentellen Ergebnisse dieser Arbeit zeigen grundsätzliche
Hürden und Möglichkeiten für das ebenfalls in dieser Arbeit eingeführte RDS auf. Es zeigt damit
grundlegende Aspekte auf, die für die Entwicklung von RDS-Hardware und die Optimierung von
MNP-Suspensionen nötig sind. Mit RDS wird in weiterführenden Arbeiten die Entwicklung von
hochempfindlichen Bioassays und die Erweiterung um die räumliche Kodierung angestrebt (RDI),
da der zugrunde liegende Effekt zugleich sehr vielversprechend als Grundlage für molekulare
Bildgebung ist.