Refine
Has Fulltext
- yes (9)
Is part of the Bibliography
- yes (9)
Document Type
- Doctoral Thesis (9)
Keywords
- Ackerschmalwand (3)
- Transkriptionsfaktor (3)
- Arabidopsis thaliana (2)
- SnRK1 (2)
- Wurzel (2)
- 9-HOT (1)
- 9-Hydroxyoktadekatriensäure (1)
- Agrobacterium tumefaciens (1)
- Arabidopsis (1)
- AtTORF-Ex-Kollektion (1)
Sonstige beteiligte Institutionen
Obwohl Pflanzenwurzeln mit einer Vielzahl von Pathogenen in Kontakt kommen, sind induzierbare Abwehrreaktionen der Wurzel bisher kaum beschrieben. Aufgrund der konzentrischen Zellschicht-Organisation der Wurzel wird angenommen, dass bei einer Immunantwort in jeder Zellschicht ein spezifisches genetisches Programm aktiviert wird. Eine Überprüfung dieser Hypothese war bisher wegen methodischen Limitierungen nicht möglich. Die zellschichtspezifische Expression Epitop-markierter ribosomaler Proteine erlaubt eine Affinitätsaufreinigung von Ribosomen und der assoziierten mRNA. Diese Methodik, als TRAP (Translating Ribosome Affinity Purification) bezeichnet, ermöglicht die Analyse des Translatoms und wurde dahingehend optimiert, pflanzliche Antworten auf Befall durch bodenbürtige Mikroorganismen in Rhizodermis, Cortex, Endodermis sowie Zentralzylinder spezifisch zu lokalisieren. Die Genexpression in der Arabidopsis-Wurzel nach Inokulation mit drei Bodenorganismen mit unterschiedlichen Lebensweisen wurde vergleichend betrachtet: Piriformospora indica kann als mutualistischer Pilz pflanzliches Wachstum und Erträge positiv beeinflussen, wohingegen der vaskuläre Pilz Verticillium longisporum für erhebliche Verluste im Rapsanbau verantwortlich ist und der hemibiotrophe Oomycet Phytophthora parasitica ein breites Spektrum an Kulturpflanzen befällt und Ernten zerstört. Für die Interaktionsstudien zwischen Arabidopsis und den Mikroorganismen während ihrer biotrophen Lebensphase wurden sterile in vitro-Infektionssysteme etabliert und mittels TRAP und anschließender RNA-Sequenzierung eine zellschichtspezifische, genomweite Translatomanalyse durchgeführt (Inf-TRAP-Seq). Dabei zeigten sich massive Unterschiede in der differentiellen Genexpression zwischen den Zellschichten, was die Hypothese der zellschichtspezifischen Antworten unterstützt. Die Antworten nach Inokulation mit pathogenen bzw. mutualistischen Mikroorganismen unterschieden sich ebenfalls deutlich, was durch die ungleichen Lebensweisen begründbar ist. Durch die Inf-TRAP-Seq Methodik konnte z.B. im Zentralzylinder der Pathogen-infizierten Wurzeln eine expressionelle Repression von positiven Regulatoren des Zellzyklus nachgewiesen werden, dagegen in den mit P. indica besiedelten Wurzeln nicht. Dies korrelierte mit einer Pathogen-induzierten Inhibition des Wurzelwachstums, welche nicht nach Inokulation mit P. indica zu beobachten war. Obwohl keines der drei Mikroorganismen in der Lage ist, den Zentralzylinder direkt zu penetrieren, konnte hier eine differentielle Genexpression detektiert werden. Demzufolge ist ein Signalaustausch zu postulieren, über den äußere und innere Zellschichten miteinander kommunizieren. In der Endodermis konnten Genexpressionsmuster identifiziert werden, die zu einer Verstärkung der Barriere-Funktionen dieser Zellschicht führen. So könnte etwa durch Lignifizierungsprozesse die Ausbreitung der Mikroorganismen begrenzt werden. Alle drei Mikroorganismen lösten besonders im Cortex die Induktion von Genen für die Biosynthese Trp-abhängiger, antimikrobieller Sekundärmetaboliten aus. Die biologische Relevanz dieser Verteilungen kann nun geklärt werden. Zusammenfassend konnten in dieser Dissertation erstmals die durch Mikroorganismen hervorgerufenen zellschichtspezifischen Antworten der pflanzlichen Wurzel aufgelöst werden. Vergleichende bioinformatische Analyse dieses umfangreichen Datensatzes ermöglicht nun, gezielt testbare Hypothesen zu generieren. Ein Verständnis der zellschichtspezifischen Abwehrmaßnahmen der Wurzel ist essentiell für die Entwicklung neuer Strategien zur Ertragssteigerung und zum Schutz von Nutzpflanzen gegen Pathogene in der Landwirtschaft.
Oxylipine werden in der Pflanze unter Stressbedingungen gebildet. Die dafür notwendige Oxidation von Fettsäuren wird entweder nicht-enzymatisch über Radikale wie reaktive Sauerstoffspezies (ROS) oder enzymatisch über Lipoxygenasen katalysiert. Abhängig von der Position der Oxidation in der Fettsäure entstehen dabei C13- oder C9-Oxylipine. Sehr gut erforscht sind C13-Oxylipine wie Jasmonsäure (JA), die bei biotischem Stress und Verwundung gebildet werden und bei exogener Gabe das Wurzelwachstum von Arabidopsis thaliana hemmen. Die C9-Oxylipine wie 9-Hydroxyoktadekatriensäure (9-HOT) sind erst wenig erforscht. Ziel dieser Arbeit war die Charakterisierung von Transkriptionsfaktoren, mit dem Fokus auf 9-HOT-vermittelte Signalwegen in Arabidopsis thaliana. Da bekannt ist, dass auch sie zu einer Hemmung des Wurzelwachstums führen, wurde dazu die Untersuchung des Wurzelwachstums von 10 Tage alten Keimlingen etabliert. Funktionsgewinn-Mutanten des Transkriptionsfaktors TGA5 sowie des TGA5-Zielgens CYTOCHROM P450 MONOOXYGENASE CYP81D11 zeigten auf 9-HOT ein verglichen mit Col-0 deutlich besseres Wurzelwachstum. Die AtTORF-Ex-Kollektion, eine große Sammlung an Überexpressions-Linien verschiedener Transkriptionsfaktoren, wurde hinsichtlich Wurzelwachstums auf dem Oxylipin 9-HOT analysiert. Die Gesamtheit der untersuchten Pflanzen enthielt 263 unabhängige TF-Expressions-Konstrukte. Von 6087 untersuchten Pflanzen zeigten 201 Pflanzen keine Hemmung des Wurzelwachstums auf 9-HOT. Dabei konnten 80 verschiedene Transkriptionsfaktoren identifiziert werden, deren Überexpression die Wurzelwachstums-hemmende Wirkung von 9-HOT kompensiert. Es zeigte sich eine Häufung von Transkriptionsfaktoren der ERF- (ethylene responsive factor) Familie. Die verstärkte Expression der nahe verwandten Transkriptionsfaktoren ERF106 und ERF107 ermöglichte sowohl auf 9-HOT als auch auf 9-KOT ein längeres Wurzelwachstum im Vergleich zum Wildtyp. Die Genexpression von ERF106 und ERF107 wird durch Überflutung aktiviert. Durch Überflutung wird im Wildtyp die Expression von Hypoxia-Antwort-Genen wie HRE1, SUS4 oder PDC1 induziert. In den Funktionsverlust-Mutanten sind diese Gene in der Expression aber nicht beeinflusst. Auch ist nach Überflutung im normalen Tag / Nacht-Rhythmus kein signifikanter Unterschied im Überleben zwischen Col-0 und den Mutanten erf106, erf107 und erf106xerf107 nachweisbar. Zur Identifikation möglicher Ziel-Gene von ERF106 und ERF107 wurden Transkriptom-Analysen durchgeführt. Die Funktionsverlust-Mutanten erf106, erf107 und erf106xerf107 zeigten weder im Grundzustand noch nach 4 Stunden Überflutung Veränderungen in den bekannten Hypoxia-Antwort-Genen. Die Funktionsgewinn-Mutanten von ERF106 und ERF107 zeigten in der Transkriptom-Analyse eine deutliche Aktivierung von Genen, die wichtig für Entgiftung und Stressabwehr sind. Ebenso wurden wichtige Biosynthese-Gene aus der Camalexin- und Glukosinolat-Synthese in den Funktionsgewinn-Mutanten verstärkt exprimiert. Des Weiteren konnte eine verringerte Expression von Genen beobachtet werden, die wichtig für die Regulation der Eisen-Aufnahme sind, darunter bHLH-Transkriptionsfaktoren, der Eisen-Transporter IRON REGULATED TRANSPORTER 1 (IRT1) und die Eisen-Reduktase FERRIC REDUCTION OXIDASE 2 (FRO2). Zusammenfassend wurden in dieser Arbeit durch die Untersuchung der AtTORF-Ex-Kollektion mehrere TF identifiziert, die wichtige Abwehr-Gene gegen Stress- und Vergiftung sowie bedeutende Gene im Bereich der Biosynthese und Eisenaufnahme regulieren können, um so die Antwort auf C9-Oxylipine zu beeinflussen.
The control of energy homeostasis is of pivotal importance for all living organisms. In the last years emerged the idea that many stress responses that are apparently unrelated, are actually united by a common increase of the cellular energy demand. Therefore, the so called energy signaling is activated by many kind of stresses and is responsible for the activation of the general stress response. In Arabidopsis thaliana the protein family SnF1- related protein kinases (SnRK1) is involved in the regulation of many physiological processes but is more known for its involvement in the regulation of the energy homeostasis in response to various stresses. To the SnRK1 protein family belong SnRK1.1 (also known as KIN10), SnRK1.2 (KIN11), and SnRK1.3 (KIN12). SnRK1 exerts its function regulating directly the activity of metabolic enzymes or those of key transcription factors (TFs). The only TFs regulated by SnRK1 identified so far is the basic leucine zipper (bZIP) 63. bZIP63 belongs to the C group of bZIPs (C-bZIPs) protein family together with bZIP9, bZIP10, and bZIP25. SnRK1.1 phosphorylates bZIP63 on three amino acids residues, serine (S) 29, S294, and S300. The phosphorylation of tbZIP63 is strongly related to the energy status of the plant, shifting from almost absent during the normal growth to strongly phosphorylated when the plant is exposed to extended dark. bZIPs normally bind the DNA as dimer in order to regulate the expression of their target genes. C-bZIPs preferentially form dimers with S1-bZIPs, constituting the so called C/S1- bZIPs network. The SnRk1 dependent phosphorylation of bZIP63 regulates its activation potential and its dimerization properties. In particular bZIP63 shift its dimerization preferences according to its phosphorylation status. The non-phosphorylated form of bZIP63 dimerize bZIP1, the phosphorylates ones, instead, forms dimer with bZIP1, bZIP11, and bZIP63 its self. Together with bZIP63, S1-bZIPs are important mediator of part of the huge transcriptional reprogramming induced by SnRK1 in response to extended dark. S1-bZIPs regulate, indeed, the expression of 4'000 of the 10'000 SnRK1-regulated genes in response to energy deprivation. In particular S1-bZIPs are very important for the regulation of many genes encoding for enzymes involved in the amino acid metabolism and for their use as alternative energy source. After the exposition for some hours to extended dark, indeed, the plant make use of every energy substrate and amino acids are considered an important energy source together with lipids and proteins. Interestingly, S1- bZIPs regulate the expression of ETFQO. ETFQO is a unique protein that convoglia the electrons provenienti from the branch chain amino acids catabolism into the mitochondrial electron transport chain. The dimer formed between bZIP63 and bZIP2 recruits SnRK1.1 directly on the chromatin of ETFQO promoter. The recruitment of SnRK1 on ETFQO promoter is associated with its acetylation on the lysine 14 of the histone protein 3 (K14H3). This chromatin modification is normally asociated with an euchromatic status of the DNA and therefore with its transcriptional activation. Beside the particular case of the regulation of ETFQO gene, S1-bZIPs are involved in the regulation of many other genes activated in response of different stresses. bZIP1 is for example an important mediator of the salt stress response. In particular bZIP1 regulates the primary C- and N-metabolism. The expression of bZIP1, in response of both salt ans energy stress seems to be regulated by SnRK1, as it is the expression of bZIP53 and bZIP63.
Beside its involvement in the regulation of the energy stress response and salt response, SnRK1 is the primary activators of the lipids metabolism during see germination. SnRK1, indeed, controls the expression of CALEOSINs and OLEOSINs. Those proteins are very important for lipids remobilization from oil droplets. Without their expression seed germination and subsequent establishment do not take place because of the absence of fuel to sustain these highly energy costly processes, which entirely depend on the catabolism of seed storages.
Die zunehmende Versalzung des Bodens führt weltweit zu starken Ernteeinbußen. Ob- wohl die Wurzeln der Pflanzen als erstes mit dem Salzstress in Berührung kommen, ist noch nicht viel über Signaltransduktionswege in Wurzeln zur Anpassung der Pflanze an Salzstress bekannt. Die bZIP-Transkriptionsfaktoren der Gruppe S1, bZIP1 und bZIP53, werden gewebespezifisch in der Wurzel nach Salzstress aktiviert. In dieser Arbeit werden diese bZIPs in ein Netzwerk eingeordnet, von der Aktivierung der Tran- skriptionsfaktoren bis zur Funktion in der Regulation des Stoffwechsels in der salzgest- ressten Pflanze.
Die Aktivierung von bZIP1 kann über verschiedene sowohl ionische als auch osmotische Stimuli erfolgen und ist abhängig von Calcium, der HEXOKINASE 1 und SnRK1- Kinasen (Snf1 RELATED PROTEIN KINASE 1). Die dunkelinduzierte Expression von bZIP1 wird HXK1-abhängig durch Glucose inhibiert, bei Energiemangelbedingungen ist die Aktivierung von bZIP1 SnRK1-abhängig. Beide Enzyme spielen auch in der salzinduzierten Expression von bZIP1 eine Rolle. Über Transkriptom- und Me- tabolomanalysen kann gezeigt werden, dass bZIP1 und bZIP53 an der Umprogram- mierung des Kohlenhydrat- und Aminosäuremetabolismus teilhaben. Besonders Gene der Glukoneogenese (PYRUVAT ORTHOPHOSPHAT DIKINASE und FRUCTOSE- 1,6-BISPHOS- PHATASE) bzw. des Aminosäurekatabolismus (BRANCHED- CHAIN AMINO ACID TRANSAMINASE 2, METHYLCROTONYL- COA-CARBOXYLASE A und HOMOGENTISATE 1,2-DIOXYGENASE ) werden von den Transkriptionsfaktoren reguliert. Das spricht für eine Umprogrammierung des Metabolismus und der Mobilisierung von Energie aus Aminosäuren zur Anpassung an die Stressbedingungen. Die Transkriptionsfaktoren der Gruppe S1 bilden vorzugsweise Heterodimere mit der Gruppe C. Mit Mutantenanalysen, die zum einen die Transkriptionsfaktoren des C/S1-Netzwerks und zum anderen Komponenten der Abscisinsäure (ABA) abhängigen Signaltransduktion beinhalten, konnte ein Signaltransduktionsnetzwerk aufgestellt werden, das die Antwort auf abiotischen Stress mittels des Signalwegs über ABA, SnRK2 und AREB (ABA RESPONSIVE ELEMENTS-BINDING PROTEIN) mit der SnRK1-vermittelten Antwort auf Energiemangelbedingungen in der Pflanze verknüpft. Die gefundenen stress- bzw. energieresponsiven Gene konnten nach den Mutantenana- lysen auf Grund ihrer unterschiedlichen Regulation in vier Klassen eingeteilt werden, wovon nur eine, die Klasse 4, von dem C/S1 Netzwerk reguliert wird. Die Klassen 1- 3 sind unabhängig von den bZIP-Transkriptionsfaktoren der Gruppe C. Die Klasse 1 bilden typische ABA-responsive Gene, die von den Gruppe A-bZIPs reguliert werden. Faktoren der Gruppe A sind auch an der Expression der Gene der Klasse 2 beteiligt, diese werden aber auch durch bZIP1 und bZIP53 induziert. Dieser Klasse konnten Gene zugeordnet werden, die im Abbau verzweigtkettiger Aminosäuren eine Rolle spielen. Am Aminosäureabbau sind außerdem die Gene der Klasse 2 beteiligt. Für diese Gene konnte eine Expressionsregulation durch bZIP1 und bZIP53 gezeigt werden. Für die Bestimmung möglicher Heterodimerisierungspartner bedarf es noch weiterer Analysen. Dieses Model, das den abitoschen Stress abhängigen ABA-Signalweg mit dem ener- gieabhängigen SnRK1-Signaltransduktionsweg verknüpft, zeigt die präzise Regulation von mindestens 4 Gen-Klassen, deren Expression durch die Kombination verschiedener bZIP-Transkriptionsfaktoren aktiviert wird.
Virulent Agrobacterium tumefaciens strains transfer and integrate a DNA region of the tumor-inducing (Ti) plasmid, the T-DNA, into the plant genome and thereby cause crown gall disease. The most essential genes required for crown gall development are the T-DNA-encoded oncogenes, IaaH (indole-3-acetamide hydrolase), IaaM (tryptophan monooxygenase) for auxin, and Ipt (isopentenyl transferase) for cytokinin biosynthesis. When these oncogenes are expressed in the host cell, the levels of auxin and cytokinin increase and cause cell proliferation. The aim of this study was to unravel the molecular mechanisms, which regulate expression of the agrobacterial oncogenes in plant cells. Transcripts of the three oncogenes were expressed in Arabidopsis thaliana crown galls induced by A. tumefaciens strain C58 and the intergenic regions (IGRs) between their coding sequences (CDS) were proven to have promoter activity in plant cells. These promoters possess eukaryotic sequence structures and contain cis-regulatory elements for the binding of plant transcription factors. The high-throughput protoplast transactivation (PTA) system was used and identified the Arabidopsis thaliana transcription factors WRKY18, WRKY40, WRKY60 and ARF5 to activate the Ipt oncogene promoter. No transcription factor promoted the activity of the IaaH and IaaM promoters, despite the fact that the sequences contained binding elements for type B ARR transcription factors. Likewise, the treatment of Arabidopsis mesophyll protoplasts with cytokinin (trans-zeatin) and auxin (1-NAA) exerted no positive effect on IaaH and IaaM promoter activity. In contrast, the Ipt promoter strongly responded to a treatment with auxin and only modestly to cytokinin. The three Arabidopsis WRKYs play a role in crown gall development as the wrky mutants developed smaller crown galls than wild-type plants. The WRKY40 and WRKY60 genes responded very quickly to pathogen infection, two and four hours post infection, respectively. Transcription of the WRKY18 gene was induced upon buffer infiltration, which implicates a response to wounding. The three WRKY proteins interacted with ARF5 and with each other in the plant nucleus, but only WRKY40 together with ARF5 increased activation of the Ipt promoter. Moreover, ARF5 activated the Ipt promoter in an auxin-dependent manner. The severe developmental phenotype of the arf5 mutant prevented studies on crown gall development, nevertheless, the reduced crown gall growth on the transport inhibitor response 1 (TIR1) tir1 mutant, lacking the auxin sensor, suggested that auxin signaling is required for optimal crown gall development. In conclusion, A. tumefaciens recruits the pathogen defense related WRKY40 pathway to activate Ipt expression in T-DNA-transformed plant cells. IaaH and IaaM gene expression seems not to be controlled by transcriptional activators, but the increasing auxin levels are signaled via ARF5. The auxin-depended activation of ARF5 boosts expression of the Ipt gene in combination with WRKY40 to increase cytokinin levels and induce crown gall development.
Photosynthetic plants have a remarkable ability to modify their metabolism and development according to ever changing environmental conditions. The root system displays continuous growth of the primary root and formation of lateral roots enabling efficient water and nutrient uptake and anchorage of the plant in soil. With regard to lateral roots, development is post-embryonic, originating from the pericycle of the primary root. Coordinated activity of several molecular signalling pathways controlled by the hormone auxin is important throughout all stages of lateral root development.At first, two adjacent Xylem Pole Pericycle (XPP) cells are activated and the nuclei of these cells migrate towards a common cell wall.This is followed by XPP cells acquiring volume thus swelling up.The XPP cells then undergo anticlinal cell division, followed by a series of periclinal and anticlinal divisions,leading to lateral root primordia.These break through the radial cell layers and emerge out the primary root.
Although root system plasticity is well-described in response to environmental cues such as ion nutrition in the soil, little is known on how root development is shaped according to the endogenous energy status of the plant.In this study, we were able to connect limited perturbations in photosynthetic energy supply to lateral root development.We established two experimental systems – treatment with low light and unexpected darkness which led to short-term energy imbalance in the plant.These short perturbations administered, showed an increase in the emerged lateral root density and decrease in root hexose availability and activation of the low energy marker gene ASN1 (ASPARAGINE SYNTHETASE 1).Although not demonstrated, presumably, these disturbances in the plant energy homeo-stasis activates SnRK1 (SNF1 RELATED KINASE 1),an evolutionary conserved kinase mediat-ing metabolic and transcriptional responses towards low energy conditions. In A. thaliana, two catalytic α-subunits of this kinase (SnRK1.α1 and SnRK1.α2) are functionally active and form ternary complexes with the regulatory β- and γ- subunits. Whereas unexpected darkness results in an increase in emerged lateral root density, the snrk1.α1 loss-of-function mutant displayed decrease in emerged lateral root density. As this effect is not that pronounced in the snrk1.α2 loss-of-function mutant, the α1 catalytic subunit is important for the observed lateral root phenotype under short-term energy perturbations. Moreover, root expression patterns of SnRK1.α1:GFP supports a role of this catalytic subunit in lateral root development. Furthermore, the lateral root response during short-term perturbations requires the SnRK1 downstream transcriptional regulator bZIP63 (BASIC LEU-CINE ZIPPER 63), as demonstrated here by a loss-of-function approach. Phenotypic studies showed that in comparison to wild-type, bzip63 mutants displayed decreased lateral root density upon low-light and unexpected darkness conditions. Previous work has demonstrat-ed that SnRK1 directly phosphorylates bZIP63 at three serine residues. Alanine-exchange mutants of the SnRK1 dependent bZIP63 phosphorylation sites behave similarly to bzip63 loss-of-function mutants and do not display increased lateral root density upon short-term unexpected darkness. This data strongly supports an impact of SnRK1-bZIP63 signalling in mediating the observed lateral root density phenotype. Plants expressing a bZIP63:YFP fu-sion protein showed specific localization patterns in primary root and in all developmental stages of the lateral root. bzip63 loss-of-function mutant lines displayed reduced early stage lateral root initiation events under unexpected darkness as demonstrated by Differen-tial Interference Contrast microscopy (DIC) and the use of a GATA23 reporter line. This data supports a role of bZIP63 in early lateral root initiation.
Next, by employing Chromatin Immunoprecitation (ChIP) sequencing, we were able to iden-tify global binding targets of bZIP63, including the auxin-regulated transcription factor (TF) ARF19 (AUXIN RESPONSE FACTOR 19), a well-described central regulator of lateral root development. Additional ChIP experiments confirmed direct binding of bZIP63 to an ARF19 promoter region harboring a G-Box cis-element, a well-established bZIP63 binding site. We also observed that short-term energy perturbation upon unexpected darkness induced tran-scription of ARF19, which was impaired in the bzip63 loss-of-function mutant. These results propose that bZIP63 mediates lateral root development under short-term energy perturba-tion via ARF19.
In conclusion, this study provides a novel mechanistic link between energy homeostasis and plant development. By employing reverse genetics, confocal imaging and high-throughput sequencing strategies, we were able to propose a SnRK1-bZIP63-ARF19 signalling module in integrating energy signalling into lateral root developmental programs.
The discovery, heterologous expression, and characterization of channelrhodopsin-2 (ChR2) – a light-sensitive cation channel found in the green alga Chlamydomonas reinhardtii – led to the success of optogenetics as a powerful technology, first in neuroscience. ChR2 was employed to induce action potentials by blue light in genetically modified nerve cells. In optogenetics, exogenous photoreceptors are expressed in cells to manipulate cellular activity. These photoreceptors were in the beginning mainly microbial opsins. During nearly two decades, many microbial opsins and their mutants were explored for their application in neuroscience. Until now, however, the application of optogenetics to plant studies is limited to very few reports. Several optogenetic strategies for plant research were demonstrated, in which most attempts are based on non-opsin optogenetic tools. Opsins need retinal (vitamin A) as a cofactor to generate the functional protein, the rhodopsin. As most animals have eyes that contain animal rhodopsins, they also have the enzyme - a 15, 15'-Dioxygenase - for retinal production from food-supplied provitamin A (beta-carotene). However, higher plants lack a similar enzyme, making it difficult to express functional rhodopsins successfully in plants. But plant chloroplasts contain plenty of beta-carotene. I introduced a gene, coding for a 15, 15'-Dioxygenase with a chloroplast target peptide, to tobacco plants. This enzyme converts a molecule of β-carotene into two of all-trans-retinal. After expressing this enzyme in plants, the concentration of all-trans-retinal was increased greatly. The increased retinal concentration led to increased expression of several microbial opsins, tested in model higher plants. Unfortunately, most opsins were observed intracellularly and not in the plasma membrane. To improve their localization in the plasma membrane, some reported signal peptides were fused to the N- or C-terminal end of opsins. Finally, I helped to identify three microbial opsins -- GtACR1 (a light-gated anion channel), ChR2 (a light-gated cation channel), PPR (a light-gated proton pump) which express and work well in the plasma membrane of plants. The transgene plants were grown under red light to prevent activation of the expressed opsins. Upon illumination with blue or green light, the activation of these opsins then induced the expected change of the membrane potential, dramatically changing the phenotype of plants with activated rhodopsins.
This study is the first which shows the potential of microbial opsins for optogenetic research in higher plants, using the ubq10 promoter for ubiquitous expression. I expect this to be just the beginning, as many different opsins and tissue-specific promoters for selective expression now can be tested for their usefulness. It is further to be expected that the here established method will help investigators to exploit more optogenetic tools and explore the secrets, kept in the plant kingdom.
Pflanzen müssen sich während der Samenkeimung und Keimlingsentwicklung über eingelagerte Speicherstoffe heterotroph versorgen, bis sie, nach Etablierung ihres Photosyntheseapparats, einen autotrophen Lebensstil führen können.
Diese Arbeit geht von der Hypothese aus, dass der evolutionär konservierten zentral-metabolischen Kinase Snf1-RELATED PROTEIN KINASE 1 (SnRK1) eine besondere Rolle bei der Mobilisierung von Speicherstoffen während der Keimlingsentwicklung zukommt. Während die Bedeutung von SnRK1 als zentraler Regulator katabolischer Prozesse unter Energiemangel- und Stresssituationen bereits gezeigt wurde, war die Funktion von SnRK1 im Zusammenhang mit der Samenkeimung weitgehend ungeklärt. In dieser Arbeit konnte erstmals gezeigt werden, dass SnRK1 in Arabidopsis die Mobilisierung und Degradation von Speicherstoffen, insbesondere von Triacylglyceride (TAGs), Samenspeicherproteinen und Aminosäuren, steuert. Sowohl Studien zur Lokalisation von SnRK1:GFP-Fusionsproteinen als auch Kinaseaktivitätsassays unterstützen eine mögliche Funktion von SnRK1 während der Keimlingsentwicklung. Eine induzierbare snrk1-knockdown Mutante zeigt neben einem eingeschränkten Wurzel- und Hypokotylwachstum auch keine Ausbildung eines Photosyntheseapparats, was die zentrale Rolle der SnRK1 in diesem frühen Entwicklungsstadium untermauert. Durch Fütterungsexperimente mit Glukose konnte der Phänotyp einer snrk1 -Mutante in Keimlingen gerettet werden. Dies zeigt, dass der metabolische Block durch externe Gabe von Kohlenhydraten umgangen werden kann. Die zentrale Funktion von SnRK1 ist folgich der Abbau von Speicherstoffen und keine allgemeine Deregulation des pflanzlichen Stoffwechsels. Durch massenspektrometrische Untersuchungen von Keimlingen des Wildtyps und der snrk1-Mutante konnte gezeigt werden, dass TAGs in der Mutante in der spä- ten Keimlingsentwicklung ab Tag 4 langsamer abgebaut werden als im Wildtyp. Ebenso werden Samenspeicherproteine in der Mutante langsamer degradiert, wodurch die Verfügbarkeit von freien Aminosäuren in geringer ist. Entgegen der allgemeinen Annahme konnte gezeigt werden, dass während der Keimlingsentwicklung zumindest in Arabidopsis, einer ölhaltigen Pflanze, zunächst Kohlenhydrate in Form von Saccharose abgebaut werden, bevor die Degradation von TAGs und Aminosäuren beginnt. Diese Abbauprodukte können dann der Glukoneogenese zugeführt werden um daraus Glukose herzustellen. Mittels Transkriptom-Analysen konnten zentrale SnRK1-abhängige Gene in der Speicherstoffmobilisierung von TAG, beispielsweise PEROXISOMAL NAD-MALATE DEHYDROGENASE 2 (PMDH2) und ACYL-CoA-OXIDASE 4 (ACX4), und Aminosäuren identifiziert werden. Somit wurde ein Mechanismus der SnRK1-abhängigen Genregulation während der Samenkeimung in Arabidopsis gefunden. Bei der Degradation von Aminosäuren wird die cytosolische PYRUVATE ORTHOPHOSPHATE DIKINASE (cyPPDK), ein Schlüsselenzym beim Abbau bestimmter Aminosäuren und bei der Glukoneogenese, SnRK1-abhängig transkriptionell reguliert. Durch Koregulation konnte der Transkriptionsfaktor bZIP63 (BASIC LEUCINE ZIPPER 63) gefunden werden, dessen Transkription ebenfalls SnRK1-abhängig reguliert wird. Außerdem konnte die Transkription von cyPPDK in bzip63-Mutanten nur noch sehr schwach induziert werden. In Protoplasten konnte der cyPPDK-Promotor durch Aktivierungsexperimente mit bZIP63 und SnRK1α1 induziert werden. Durch Mutationskartierung und Chromatin-Immunopräzipitation (ChIP)PCR konnte mehrfach eine direkte Bindung von bZIP63 an den cyPPDK-Promotor nachgewiesen werden. Zusammenfassend ergibt sich ein mechanistisches Arbeitsmodell, in dem bZIP63 durch SnRK1 phosphoryliert wird und durch Bindung an regulatorische G-Box cis-Elemente im cyPPDK- Promotor dessen Transkription anschaltet. Infolgedessen werden Aminosäuren abgebaut und wird über die Glukoneogenese Glukose aufgebaut. Dieser Mechanismus ist essentiell für die Übergangsphase zwischen heterotropher und autotropher Lebensweise, und trägt dazu bei, die im Samen vorhandenen Ressourcen dem Keimling zum idealen Zeitpunkt zugänglich zu machen. Darüber hinaus werden Gene im Abbau von verzweigtkettigen Aminosäuren ebenfalls durch bZIP63 reguliert. Dabei wird dem Keimling Energie in Form von Adenosin-Triphosphat (ATP) zur Verfügung gestellt.
Zusammengefasst zeigen die Ergebnisse dieser Arbeit, dass die Mobilisierung von Speicherstoffen auch während der Keimlingsentwicklung direkt von SnRK1 abhängig ist. Die umfangreichen Datensätze der RNA-Seq-Analysen bieten zudem die Möglichkeit, weitere SnRK1-abhängige Gene der Speichermobilisierung zu identifizieren und somit einem besseren Verständnis der Keimlingsentwicklung beizutragen. Aufgrund der zentralen Bedeutung der SnRK1-Kinase in diesem entscheidenden Entwicklungsschritt ist davon auszugehen, dass diese Erkenntnisse mittelfristig auch für bessere Keimungsraten und somit bessere Erträge in der Landwirtschaft genutzt werden können.
The evolutionary success of higher plants is largely attributed to their tremendous developmental
plasticity, which allows them to cope with adverse conditions. However, because these adaptations
require investments of resources, they must be tightly regulated to avoid unfavourable trade-offs.
Most of the resources required are macronutrients based on carbon and nitrogen. Limitations in the
availability of these nutrients have major effects on gene expression, metabolism, and overall plant
morphology. These changes are largely mediated by the highly conserved master kinase SNF1-RELATED
PROTEIN KINASE1 (SnRK1), which represses growth and induces catabolic processes. Downstream of
SnRK1, a hub of heterodimerising group C and S1 BASIC LEUCINE ZIPPER (bZIP) transcription factors has
been identified. These bZIPs act as regulators of nutrient homeostasis and are highly expressed in
strong sink tissues, such as flowers or the meristems that initiate lateral growth of both shoots and
roots. However, their potential involvement in controlling developmental responses through their
impact on resource allocation and usage has been largely neglected so far. Therefore, the objective of
this work was to elucidate the impact of particularly S1 bZIPs on gene expression, metabolism, and
plant development.
Due to the high homology and suspected partial redundancy of S1 bZIPs, higher order loss-of-function
mutants were generated using CRISPR-Cas9. The triple mutant bzip2/11/44 showed a variety of robust
morphological changes but maintained an overall growth comparable to wildtype plants. In detail
however, seedlings exhibited a strong reduction in primary root length. In addition, floral transition
was delayed, and siliques and seeds were smaller, indicating a reduced supply of resources to the shoot
and root apices. However, lateral root density and axillary shoot branching were increased, suggesting
an increased ratio of lateral to apical growth in the mutant. The full group S1 knockout
bzip1/2/11/44/53 showed similar phenotypes, albeit far more pronounced and accompanied by
growth retardation. Metabolomic approaches revealed that these architectural changes were
accompanied by reduced sugar levels in distal sink tissues such as flowers and roots. Sugar levels were
also diminished in leaf apoplasts, indicating that long distance transport of sugars by apoplastic phloem
loading was impaired in the mutants. In contrast, an increased sugar supply to the proximal axillary
buds and elevated starch levels in the leaves were measured. In addition, free amino acid levels were
increased in bzip2/11/44 and bzip1/2/11/44/53, especially for the important transport forms
asparagine and glutamine. The increased C and N availability in the proximal tissues could be the cause
of the increased axillary branching in the mutants.
To identify bZIP target genes that might cause the observed shifts in metabolic status, RNAseq
experiments were performed. Strikingly, clade III SUGARS WILL EVENTUALLY BE EXPORTED (SWEET)
8
genes were abundant among the differentially expressed genes. As SWEETs are crucial for sugar export
to the apoplast and long-distance transport through the phloem, their reduced expression is likely to
be the cause of the observed changes in sugar allocation. Similarly, the reduced expression of
GLUTAMINE AMIDOTRANSFERASE 1_2.1 (GAT1_2.1), which exhibits glutaminase activity, could be an
explanation for the abundance of glutamine in the mutants. Additional experiments (ATAC-seq, DAPseq, PTA, q-RT-PCR) supported the direct induction of SWEETs and GAT1_2.1 by S1 bZIPs. To confirm
the involvement of these target genes in the observed S1 bZIP mutant phenotypes, loss-of-function
mutants were obtained, which showed moderately increased axillary branching. At the same time, the
induced overexpression of bZIP11 in axillary meristems had the opposite effect.
Collectively, a model is proposed for the function of S1 bZIPs in regulating sink tissue development. For
efficient long-distance sugar transport, bZIPs may be required to induce the expression of clade III
SWEETs. Thus, reduced SWEET expression in the S1 bZIP mutants would lead to a decrease in apoplastic
sugar loading and a reduced supply to distal sinks such as shoot or root apices. The reduction in longdistance transport could lead to sugar accumulation in the leaves, which would then increasingly be
transported via symplastic routes towards proximal sinks such as axillary branches and lateral roots or
sequestered as starch. The reduced GAT1_2.1 levels lead to an abundance of glutamine, a major
nitrogen transport form. The combined effect on C and N allocation results in increased nutrient
availability in proximal tissues, promoting the formation of lateral plant organs. Alongside emerging
evidence highlighting the power of bZIPs to steer nutrient allocation in other species, a novel but
evolutionary conserved role for S1 bZIPs as regulators of developmental plasticity is proposed, while
the generation of valuable data sets and novel genetic resources will help to gain a deeper
understanding of the molecular mechanisms involved