Refine
Has Fulltext
- yes (13)
Is part of the Bibliography
- yes (13)
Document Type
- Doctoral Thesis (13)
Language
- English (13)
Keywords
- Biene (4)
- Cataglyphis (4)
- Arbeitsteilung (3)
- Neuroethologie (3)
- Neuronale Plastizität (3)
- Neuropeptide (2)
- Pilzkörper (2)
- Soziale Insekten (2)
- Adaptives Immunsystem (1)
- Alzheimer`s disease (1)
Desert ants of the genus Cataglyphis (Formicinae) are widely distributed in arid
areas of the palearctic ecozone. Their habitats range from relatively cluttered environments in the Mediterranean area to almost landmark free deserts. Due to their
sophisticated navigational toolkit, mainly based on the sky-compass, they were
studied extensively for the last 4 decades and are an exceptional model organism
for navigation. Cataglyphis ants exhibit a temporal polyethism: interior workers
stay inside the dark nest and serve as repletes for the first ∼2 weeks of their adult
life (interior I). They then switch to nursing and nest maintenance (interior II)
until they transition to become day-active outdoor foragers after ∼4 weeks. The
latter switch in tasks involves a transition phase of ∼2-3 days during which the
ants perform learning and orientation walks. Only after this last phase do the ants
start to scavenge for food as foragers.
In this present thesis I address two main questions using Cataglyphis desert ants
as a model organism:
1. What are the underlying mechanisms of temporal polyethism?
2. What is the neuronal basis of sky-compass based navigation in Cataglyphis
ants?
Neuropeptides are important regulators of insect physiology and behavior and as
such are promising candidates regarding the regulation of temporal polyethism in
Cataglyphis ants. Neuropeptides are processed from large precursor proteins and undergo substantial post-translational modifications. Therefore, it is crucial to biochemically identify annotated peptides. As hardly any peptide data are available
for ants and no relevant genomic data has been recorded for Cataglyphis, I started
out to identify the neuropeptidome of adult Camponotus floridanus (Formicinae)
workers (manuscript 1). This resulted in the first neuropeptidome described in an
ant species – 39 neuropeptides out of 18 peptide families. Employing a targeted
approach, I identified allatostatin A (AstA), allatotropin (AT), short neuropeptide
F (sNPF) and tachykinin (TK) using mass spectrometry and immunohistology to
investigate the distribution of AstA, AT and TK in the brain (manuscript 2). All
three peptides are localized in the central complex, a brain center for sensory integration and high-order control of locomotion behavior. In addition, AstA and
TK were also found in visual and olfactory input regions and in the mushroom
bodies, the centers for learning and memory formation. Comparing the TK immunostaining in the brain of 1, 7 and 14 days old dark kept animals revealed that
the distribution in the central complex changes, most prominently in the 14 day
old group. In the Drosophila central complex TK modulates locomotor activity
levels. I therefore hypothesize that TK is involved in the internal regulation of the
interior I–interior II transition which occurs after ∼2 weeks of age.
I designed a behavioral setup to test the effect of neuropeptides on the two traits:
’locomotor activity level’ and ’phototaxis’ (manuscript 3). The test showed that
interior I ants are less active than interior II ants, which again are less active
than foragers. Furthermore, interior ants are negatively phototactic compared to
a higher frequency of positive phototaxis in foragers. Testing the influence of AstA
and AT on the ants’ behavior revealed a stage-specific effect: while interior I behavior is not obviously influenced, foragers become positively phototactic and more
active after AT injection and less active after AstA injection. I further tested the
effect of light exposure on the two behavioral traits of interior workers and show that it rises locomotor activity and results in decreased negative phototaxis in
interior ants. However, both interior stages are still more negatively phototactic
than foragers and only the activity level of interior II ants is raised to the forager
level. These results support the hypothesis that neuropeptides and light influence
behavior in a stage-specific manner.
The second objective of this thesis was to investigate the neuronal basis of skycompass navigation in Cataglyphis (manuscript 4). Anatomical localization of the
sky-compass pathway revealed that its general organization is highly similar to
other insect species. I further focused on giant synapses in the lateral complex,
the last relay station before sky-compass information enters the central complex.
A comparison of their numbers between newly eclosed ants and foragers discloses
a rise in synapse numbers from indoor worker to forager, suggesting task-related
synaptic plasticity in the sky-compass pathway. Subsequently I compared synapse
numbers in light preexposed ants and in dark-kept, aged ants. This experiment
showed that light as opposed to age is necessary and sufficient to trigger this rise
in synapse number. The number of newly formed synapses further depends on the
spectral properties of the light to which the ants were exposed to.
Taken together, I described neuropeptides in C. floridanus and C. fortis, and provided first evidence that they influence temporal polyethism in Cataglyphis ants.
I further showed that the extent to which neuropeptides and light can influence
behavior depends on the animals’ state, suggesting that the system is only responsive under certain circumstances. These results provided first insight into the
neuronal regulation of temporal polyethism in Cataglyphis. Furthermore, I characterized the neuronal substrate for sky-compass navigation for the first time in
Cataglyphis. The high level of structural synaptic plasticity in this pathway linked
to the interior–forager transition might be particularly relevant for the initial calibration of the ants’ compass system.
Division of labor represents a major advantage of social insect communities that accounts for their enormous ecological success. In colonies of the honeybee, Apis mellifera, division of labor comprises different tasks of fertile queens and drones (males) and, in general, sterile female workers. Division of labor also occurs among workers in form of an age-related polyethism. This helps them to deal with the great variety of tasks within the colony. After adult eclosion, workers spend around three weeks with various duties inside the hive such as tending the brood or cleaning and building cells. After this period workers switch to outdoor tasks and become foragers collecting nectar, pollen and water. With this behavioral transition, workers face tremendous changes in their sensory environment. In particular, visual sensory stimuli become important, but also the olfactory world changes. Foragers have to perform a completely new behavioral repertoire ranging from long distance navigation based on landmark orientation and polarized-skylight information to learning and memory tasks associated with finding profitable food sources. However, behavioral maturation is not a purely age-related internal program associated with a change, for example, in juvenile hormone titers. External factors such as primer pheromones like the brood pheromone or queen mandibular pheromone can modulate the timing of this transition. In this way colonies are able to flexibly adjust their work force distribution between indoor and outdoor tasks depending on the actual needs of the colony. Besides certain physiological changes, mainly affecting glandular tissue, the transition from indoor to outdoor tasks requires significant adaptations in sensory and higher-order integration centers of the brain.
The mushroom bodies integrate olfactory, visual, gustatory and mechanosensory information. Furthermore, they play important roles in learning and memory processes. It is therefore not surprising that the mushroom bodies, in particular their main input region, the calyx, undergo volumetric neuronal plasticity. Similar to behavioral maturation, plastic changes of the mushroom bodies are associated with age, but are also to be affected by modulating factors such as task and experience.
In my thesis, I analyzed in detail the neuronal processes underlying volumetric plasticity in the mushroom body. Immunohistochemical labeling of synaptic proteins combined with quantitative 3D confocal imaging revealed that the volume increase of the mushroom body calyx is largely caused by the growth of the Kenyon cell dendritic network. This outgrowth is accompanied by changes in the synaptic architecture of the mushroom body calyx, which is organized in a distinct pattern of synaptic complexes, so called microglomeruli. During the first week of natural adult maturation microglomeruli remain constant in total number. With subsequent behavioral transition from indoor duties to foraging, microglomeruli are pruned while the Kenyon cell dendritic network is still growing. As a result of these processes, the mushroom body calyx neuropil volume enlarges while the total number of microgloumeruli becomes reduced in foragers compared to indoor workers. In the visual subcompartments (calyx collar) this process is induced by visual sensory stimuli as the beginning of pruning correlates with the time window when workers start their first orientation flights. The high level of analysis of cellular and subcellular process underlying structural plasticity of the mushroom body calyx during natural maturation will serve as a framework for future investigations of behavioral plasticity in the honeybee.
The transition to foraging is not purely age-dependent, but gets modulated, for example, by the presence of foragers. Ethyl oleate, a primer pheromone that is present only in foragers, was shown to delay the onset of foraging in nurse bees. Using artificial application of additional ethyl oleate in triple cohort colonies, I tested whether it directly affects adult neuronal plasticity in the visual input region of the mushroom body calyx. As the pheromonal treatment failed to induce a clear behavioral phenotype (delayed onset of foraging) it was not possible to show a direct link between the exposure to additional ethyl oleate and neuronal plasticity in mushroom body calyx. However, the general results on synaptic maturation confirmed my data of natural maturation processes in the mushroom body calyx.
Given the result that dendritic plasticity is a major contributor to neuronal plasticity in the mushroom body calyx associated with division of labor, the question arose which proteins could be involved in mediating these effects. Calcium/calmodulin-dependent protein kinase II (CaMKII) especially in mammals, but also in insects (Drosophila, Cockroach), was shown to be involved in facilitating learning and memory processes like long-term synaptic potentiation. In addition to presynaptic effects, the protein was also revealed to directly interact with cytoskeleton elements in the postsynapse. It therefore is a likely candidate to mediate structural synaptic plasticity. As part of my thesis, the presence and distribution of CaMKII was analyzed, and the results showed that the protein is highly concentrated in a distinct subpopulation of the mushroom body intrinsic neurons, the noncompact Kenyon cells. The dendritic network of this population arborizes in two calyx subregions: one receiving mainly olfactory input – the lip – and the collar receiving visual input. This distribution pattern did not change with age or task. The high concentration of CaMKII in dendritic spines and its overlap with f-actin indicates that CaMKII could be a key player inducing structural neuronal plasticity associated with learning and memory formation and/or behavioral transitions related to division of labor. Interestingly CaMKII immunoreactivity was absent in the basal ring, another subregion of the mushroom body calyx formed almost exclusively by the inner compact Kenyon cells and known to receive combined visual and olfactory input. This indicates differences of this mushroom body subregion regarding the molecular mechanisms controlling plastic changes in corresponding Kenyon cells.
How is timing of behavioral and neuronal plasticity regulated? The primer pheromone ethyl oleate was found in high concentrations on foragers and was shown to influence behavioral maturation by delaying the onset of foraging when artificially applied in elevated concentrations. But how is ethyl oleate transferred and how does it shift the work force distribution between indoor and outdoor tasks? Previous work showed that ethyl oleate concentrations are highest in the honeycrop of foragers and suggested that it is transferred and communicated inside the colony via trophallaxis. The results of this thesis however clearly show, that ethyl oleate was not present inside the honey crop or the regurgitate, but rather in the surrounding tissue of the honey crop. As additionally the second highest concentration of ethyl oleate was measured on the surface of the cuticle of forgers, trophallaxis was ruled out as a mode of transmission. Neurophysiological measurements at the level of the antennae (electroantennogram recordings) and the first olfactory neuropil (calcium imaging of activity in the antennal lobe) revealed that the primer pheromone ethyl oleate is received and processed as an olfactory stimulus. Appetitive olfactory conditioning using the proboscis extension response as a behavioral paradigm showed that ethyl oleate can be associated with a sugar reward. This indicates that workers are able to perceive, learn and memorize the presence of this pheromone. As ethyl oleate had to be presented by a heated stimulation device at close range, it can be concluded that this primer pheromone acts via close range/contact chemoreception through the olfactory system. This is also supported by previous behavioral observations.
Taken together, the findings presented in this thesis revealed structural changes in the synaptic architecture of the mushroom body calyx associated with division of labor. For the primer pheromone ethyl oleate, which modulates the transition from nursing to foraging, the results clearly showed that it is received via the olfactory system and presumably acts via this pathway. However, manipulation experiments did not indicate a direct effect of ethyl oleate on synaptic plasticity. At the molecular level, CaMKII is a prime candidate to mediate structural synaptic plasticity in the mushroom body calyx. Future combined structural and functional experiments are needed to finally link the activity of primer pheromones like ethyl oleate to the molecular pathways mediating behavioral and synaptic plasticity associated with division of labor in Apis mellifera. The here identified underlying processes will serve as excellent models for a general understanding of fundamental mechanisms promoting behavioral plasticity.
The pathogenic role of endogenous antibodies in a mouse model for Charcot-Marie-Tooth 1B neuropathy
(2015)
Charcot-Marie-Tooth (CMT) type 1 neuropathies are a genetically heterogeneous group of non-treatable inherited disorders affecting the peripheral nervous system that lead to sensory and motor dysfunction. Secondary low grade inflammation, implicating the innate and adaptive immune system, could previously be identified as a substantial disease modifier in two mouse models for CMT1, CMT1B and 1X, respectively. However, the exact mechanism how the adaptive immune system contributes to disease pathogenesis is not completely understood. Based on observations that the accumulation of endogenous antibodies to myelin components is important for rapid myelin clearance after nerve injury during Wallerian degeneration, a possibly similar mechanism was considered for endogenous antibodies as disease amplifier in mice heterozygously deficient for P0 (P0het), mimicking some typical features of CMT1B.
In this study an increased antibody deposition was detected in the affected peripheral nerves of P0het myelin mutant mice. By crossbreeding P0het mutants with mice specifically lacking B-lymphocytes, and therefore antibodies (JHD-/-), a decline of endoneurial macrophages together with a substantially ameliorated demyelination could be demonstrated in 6-month-old mutant mice. Moreover, reconstitution with murine IgGs reverted the neuropathic phenotype, substantiating that endogenous antibodies are potentially pathogenic at this early stage of disease. Unexpectedly, in 12-months-old P0het mutants, JHD deficiency resulted in disease aggravation accompanied by an increased inflammatory reaction and M2-polarized macrophage response.
These observations suggest that in a mouse model for CMT1B, the lack of endogenous antibodies has a dichotomous effect: ameliorating early macrophage-mediated demyelination, as opposed to increasing inflammatory reactions leading to disease aggravation at older ages.
Alzheimer’s disease (AD) is the most prevalent neurodegenerative disease of the brain, which is characterized by a progressive loss of memory and spatial orientation. Only less than 5-10% of AD sufferers are familial cases due to genetic mutations in the amyloid precursor protein (APP) gene or presenilin (PS) 1 and 2 genes. The cause of sporadic AD (sAD) which covers > 95% of AD patients is still unknown. Current research found interactions between aging, diabetes and cognitive decline including dementia in general and in AD in particular. Disturbances of brain glucose uptake, glucose tolerance and utilization and impairment of the insulin/insulin receptor (IR) signaling cascade are thought to be key targets for the development of sAD.
In the brain of AD patients, neural plasticity is impaired indicated by synaptic and neuronal loss. Adult neurogenesis (AN), the generation of functional neurons in the adult brain, may be able to restore neurological function deficits through the integration of newborn neurons into existing neural networks. The dentate gyrus of the hippocampus is one out of few brain regions where life-long AN exists. However, there is a big controversy in literature regarding the involvement of AN in AD pathology. Most animal studies used transgenic mice based on the Amyloid ß (Aß) hypothesis which primarily act as models for the familial form of AD. Findings from human post mortem AN studies were also inconstistent. In this thesis, we focused on the possible involvement of AN in the pathogenesis of the sporadic form of AD. Streptozotocin intracerebroventricularily (STZ icv) treated rats, which develop an insulin-resistant brain state and learning and memory deficits preceding Aß pathology act as an appropriate animal model for sAD. We used STZ treatment for both parts of my work, for the in vivo and in vitro study.
In the first part of my thesis, my coworkers and I investigated STZ icv treatment effects on different stages of AN in an in vivo approach. Even if STZ icv treatment does not seem to considerably influence stem cell proliferation over a short-term (1 month after STZ icv treatment) as well as in a long-term (3 months after STZ icv treatment) period, it results in significantly less immature and newborn mature neurons 3 months after STZ icv treatment. This reduction detected after 3 months was specific for the septal hippocampus, discussed to be important for spatial learning. Subsequently we performed co-localization studies with antibodies detecting BrdU (applied appr. 27 days before sacrifice) and cell-type specific markers such as NeuN, and GFAP, we found that STZ treatment does not affect the differentiation fate of newly generated cells. Phenotype analysis of BrdU-positive cells in the hilus and molecular layer revealed that some of the BrdU-positive cells are newborn oligodendrocytes but not newborn microglia.
In the second part of my thesis I worked with cultured neural stem cells (NSCs) isolated from the adult rat hippocampus to reveal STZ effects on the proliferation of of NSCs, and on the survival and differentiation of their progeny. Furthermore, this in vitro approach enabled me to study cellular mechanisms underlying the observed impaired neurogenesis in the hippocampus of STZ-treated rats. In contrast to our findings of the STZ icv in vivo study we revealed that STZ supplied with the cell culture medium inhibits the proliferation of NSCs in a dose-dependent and time-dependent manner. Moreover, performing immunofluorescence studies with antibodies detecting cell-type specific markers after triggering NSCs to differentiate, we could show that STZ treatment affects the number of newly generated neurons but not of astrocytes. Analyzing newborn cells starting to differentiate and migrate I was able to demonstrate that STZ has no effect on the migration of newborn cells. Trying to reveal cellular mechanisms underlying the negative influence of STZ on hippocampal AN, we performed qRT-PCR and immunofluorescence staining and thus could show that in NSCs the expression of glucose transporter (GLUT)3 mRNA as well as IR and GLUT3 protein levels are reduced after STZ treatment. Therefore, the inhibition of the proliferation of NSCs may be (at least partially) caused by these two molecules. Interestingly, the effect of STZ on differentiating cells was shown to be different, as IR protein expression was not significantly changed but GLUT3 protein levels were decreased in consequence of STZ treatment.
In summary, this project delivered further insights into the interrelation between AN the sporadic form of sAD and thus provides a basis of new therapeutic approaches in sAD treatment through intervening AN. Discrepancies between the results of the two parts of my thesis, the in vivo and in vitro part, were certainly caused to a certain extent by the missing microenvironment in the in vitro approach with cultured NSCs. Future studies e.g. using co-culture systems could at least minimize the effect of a missing natural microenvironment of cultured NSCs, so that the use of an in vitro approach for the investigation of STZ treatment underlying cellular mechanisms can be improved.
Mechanisms of visual memory formation in bees: About immediate early genes and synaptic plasticity
(2017)
Animals form perceptual associations through processes of learning, and retain that information through mechanisms of memory. Honeybees and bumblebees are classic models for insect perception and learning, and despite their small brains with about one million neurons, they are organized in highly social colonies and possess an astonishing rich behavioral repertoire including navigation, communication and cognition. Honeybees are able to harvest hundreds of morphologically divergent flower types in a quick and efficient manner to gain nutrition and, back in the hive, communicate discovered food sources to nest mates. To accomplish such complex tasks, bees must be equipped with diverse sensory organs receptive to stimuli of different modalities and must be able to associatively learn and memorize the acquired information. Particularly color vision plays a prominent role, e.g. in navigation along landmarks and when bees identify inflorescences by their color signals. Once acquired, bees are known to retain visual information for days or even months. Numerous studies on visual perception and color vision have been conducted in the past decades and largely revealed the information processing pathways in the brain. In contrast, there are no data available on how the brain may change in the course of color learning experience and whether pathways differ for coarse and fine color learning. Although long-term memory (LTM) storage is assumed to generally include reorganization of the neuronal network, to date it is unclear where in the bee brain such changes occur in the course of color learning and whether visual memories are stored in one particular site or decentrally distributed over different brain domains. The present dissertation research aimed to dissect the visual memory trace in bees that is beyond mere stimulus processing and therefore two different approaches were elaborated: first, the application of immediate early genes (IEG) as genetic markers for neuronal activation to localize early processes underlying the formation of a stable LTM. Second, the analysis of late consequences of memory formation, including synaptic reorganization in central brain areas and dependencies of color discrimination complexity.
Immediate early genes (IEG) are a group of rapidly and transiently expressed genes that are induced by various types of cellular stimulation. A great number of different IEGs are routinely used as markers for the localization of neuronal activation in vertebrate brains. The present dissertation research was dedicated to establish this approach for application in bees, with focus on the candidate genes Amjra and Amegr, which are orthologous to the two common vertebrate IEGs c-jun and egr-1. First the general requirement of gene transcription for visual LTM formation was proved. Bumblebees were trained in associative proboscis extension response (PER) conditioning to monochromatic light and subsequently injected with an inhibitor of gene transcription. Memory retention tests at different intervals revealed that gene transcription is not required for the formation of a mid-term memory, but for stable LTM. Next, the appliance of the candidate genes was validated. Honeybees were exposed to stimulation with either alarm pheromone or a light pulse, followed by qPCR analysis of gene expression. Both genes differed in their expression response to sensory exposure: Amjra was upregulated in all analyzed brain parts (antennal lobes, optic lobes and mushroom bodies, MB), independent from stimulus modality, suggesting the gene as a genetic marker for unspecific general arousal. In contrast, Amegr was not significantly affected by mere sensory exposure. Therefore, the relevance of associative learning on Amegr expression was assessed. Honeybees were trained in visual PER conditioning followed by a qPCR-based analysis of the expression of all three Amegr isoforms at different intervals after conditioning. No learning-dependent alteration of gene expression was observed. However, the presence of AmEgr protein in virtually all cerebral cell nuclei was validated by immunofluorescence staining. The most prominent immune-reactivity was detected in MB calyx neurons.
Analysis of task-dependent neuronal correlates underlying visual long-term memory was conducted in free-flying honeybees confronted with either absolute conditioning to one of two perceptually similar colors or differential conditioning with both colors. Subsequent presentation of the two colors in non-rewarded discrimination tests revealed that only bees trained with differential conditioning preferred the previously learned color. In contrast, bees of the absolute conditioning group chose randomly among color stimuli. To investigate whether the observed difference in memory acquisition is also reflected at the level of synaptic microcircuits, so called microglomeruli (MG), within the visual domains of the MB calyces, MG distribution was quantified by whole-mount immunostaining three days following conditioning. Although learning-dependent differences in neuroarchitecture were absent, a significant correlation between learning performance and MG density was observed.
Taken together, this dissertation research provides fundamental work on the potential use of IEGs as markers for neuronal activation and promotes future research approaches combining behaviorally relevant color learning tests in bees with examination of the neuroarchitecture to pave the way for unraveling the visual memory trace.
The brain is the central organ of an animal controlling its behavior. It integrates internal information from the body and external stimuli from the surrounding environment to mediate an appropriate behavioral response. Since the environment is constantly changing, a flexible adjustment of the brain to new conditions is crucial for the animals’ fitness. The ability of the nervous system to adapt to new challenges is defined as plasticity. Over the last few decades great advances have been made in understanding the cellular and molecular mechanisms underlying neuronal plasticity. Plasticity may refer to structural changes physically remodeling the neuronal circuit, or to functional adaptations which are manifested in modified synaptic transmission, and in altered response and firing properties of single neurons. These structural and functional modifications are mediated by a complex interplay of environmental stimuli, intracellular signal transduction cascades, protein modifications, gene translation and transcription, and epigenetic gene regulatory mechanisms. However, especially the molecular mechanisms of environmentally-induced structural neuronal plasticity are still poorly understood.
In this thesis the honey bee was used as an innovative model organism to investigate this issue. The honey bee with its rich behavioral repertoire, highly sophisticated and plastic neuronal system, sequenced genome and full epigenetic machinery is well suited for studying the molecular underpinnings of environmentally-induced neuronal plasticity. Adult honey bees progress through a series of tasks within the dark hive until after about three weeks they start with foraging activities in the external world. The transition from in-hive to outside tasks is associated with remarkable structural neuronal plasticity. Subdivisions of the mushroom body, a brain region related to higher cognitive functions, are increased in volume. The volume expansion is mediated by a remarkable outgrowth of the dendritic network of mushroom body intrinsic neurons, so called Kenyon cells. In parallel, prominent synaptic structures, referred to as microglomeruli, are pruned. Most interestingly for this thesis, the pruning of microglomeruli and the dendritic expansion in Kenyon cells can be induced by a simple light exposure paradigm.
In the first chapter of the present thesis I used this paradigm to induce synaptic plasticity in the mushroom bodies under controlled lab conditions to search for correlating molecular changes which possibly mediate the observed plasticity. I compared the brain transcriptome of light-exposed and dark-kept control bees by whole transcriptome sequencing. This revealed a list of differentially expressed genes (DEGs). The list contains conserved genes which have reported functions in neuronal plasticity, thereby introducing them as candidate genes for plasticity in the honey bee brain. Furthermore, with this transcriptomic approach I discovered many candidate genes with unknown functions or functions so far unrelated to neuronal plasticity suggesting that these novel genes may have yet unrecognized roles in neuronal plasticity. A number of DEGs are known to be methylated or to exert epigenetic modifications on themselves speaking for a strong impact of epigenetic mechanisms in light-induced structural plasticity in the honey bee brain. This notion is supported by a differential methylation pattern of one examined DEG between light-exposed and dark-kept bees as shown in this thesis. Also a plasticity-related microRNA, which is predicted to target genes associated with cytoskeleton formation, was found to be upregulated in light-exposed bees. This speaks for a translation regulatory mechanism in structural plasticity in the honey bee.
Another interesting outcome of this study is the age-dependent expression of DEGs. For some plasticity-related DEGs, the amplitude of light-induced expression differs between one- and seven-day-old bees, and also the basal expression level of many DEGs in naive dark-kept control bees significantly varies between the two age groups. This suggests that the responsiveness of plasticity-related genes to environmental stimuli is also under developmental (age-dependent) control, which may be important for normal maturation and for the regulation of age-related changes in behavior. Indeed, I was able to demonstrate in phototaxis experiments that one- and seven-day-old bees show different behaviors in response to light exposure and thus the correlating age-dependent transcriptional differences may serve as mechanisms promoting age-related changes in behavior.
Together the results of the transcriptomic study demonstrate the successfulness of my approach to identify candidate molecular mechanisms for environmentally-induced structural plasticity in the honey bee brain. Furthermore, the thesis provides seminal evidence for the implication of DNA methylation in this process.
To better understand the role of DNA methylation for neuronal and behavioral plasticity in the honey bee, the second chapter of the thesis aims at characterizing this molecular process under more natural conditions. Therefore, I examined the expression of the DNA methyltransferase 3 (DNMT3) and of Ten-eleven translocation methylcytosine dioxygenase (TET) between in-hive bees and foragers. DNMT3 is responsible for DNA de novo methylation, whereas TET promotes DNA demethylation by converting methylcytosine (5mC) to hydroxymethylcytosine (5hmC). The data suggest that age and experience determine the expression of these two epigenetic key genes. Additionally, in this context, two examined DEGs are shown to be differentially methylated between nurses and foragers. One of these two DEGs, the plasticity related gene bubblegum (bgm), also exhibits an altered DNA methylation pattern in response to light exposure. Hence, these results of my thesis provide additional evidence for the importance of DNA methylation in behavioral and neuronal plasticity.
Results from the second chapter of this thesis also suggest additional functions of DNMT3 and TET to their traditional roles in DNA methylation/demethylation. I show that TET is far more expressed in the honey bee brain than DNMT3. This stands in contrast to the relative scarcity of 5hmC compared to 5mC and points at extra functions of this gene like RNA modifications as reported for Drosophila. Antibody staining against the DNMT3 gene product revealed an unexpected rare localization of the enzyme in the nucleus, but a surprisingly high abundance in the cytoplasm. The role of cytoplasmic DNMT3 is unknown. One possibility for the high abundance in the cytoplasm is a regulatory mechanism for DNA methylation by cytoplasmic-nuclear trafficking, or an additional function of DNMT3 in RNA modification, similar to TET.
Altogether, this thesis points at future research directions for neuronal plasticity by providing promising evidence for the involvement of epigenetic mechanisms and of a number of new candidate genes in environmentally induced structural plasticity in the honey bee brain. Furthermore, I present data suggesting so far unrecognized functions of DNMT3 which certainly need to be experimentally addressed in the future to fully understand the role of this enzyme.
The honeybee Apis mellifera is a social insect well known for its complex behavior and the ability to learn tasks associated with central place foraging, such as visual navigation or to learn and remember odor-reward associations. Although its brain is smaller than 1mm² with only 8.2 x 105 neurons compared to ~ 20 x 109 in humans, bees still show amazing social, cognitive and learning skills. They express an age – related division of labor with nurse bees staying inside the hive and performing tasks like caring for the brood or cleaning, and foragers who collect food and water outside the hive. This challenges foragers with new responsibilities like sophisticated navigation skills to find and remember food sources, drastic changes in the sensory environment and to communicate new information to other bees. Associated with this plasticity of the behavior, the brain and especially the mushroom bodies (MBs) - sensory integration and association centers involved in learning and memory formation – undergo massive structural and functional neuronal alterations. Related to this background my thesis on one hand focuses on neuronal plasticity and underlying molecular mechanisms in the MBs that accompany the nurse – forager transition.
In the first part I investigated an endogenous and an internal factor that may contribute to the nurse - forager phenotype plasticity and the correlating changes in neuronal network in the MBs: sensory exposure (light) and juvenile hormone (JH). Young bees were precociously exposed to light and subsequently synaptic complexes (microglomeruli, MG) in the MBs or respectively hemolymph juvenile hormone (JH) levels were quantified. The results show that light input indeed triggered a significant decrease in MG density, and mass spectrometry JH detection revealed an increase in JH titer. Interestingly light stimulation in young bees (presumably nurse bees) triggered changes in MG density and JH levels comparable to natural foragers. This indicates that both sensory stimuli as well as the endocrine system may play a part in preparing bees for the behavioral transition to foraging.
Considering a connection between the JH levels and synaptic remodeling I used gene knockdown to disturb JH pathways and artificially increase the JH level. Even though the knockdown was successful, the results show that MG densities remained unchanged, showing no direct effect of JH on synaptic restructuring.
To find a potential mediator of structural synaptic plasticity I focused on the calcium-calmodulin-dependent protein kinase II (CaMKII) in the second part of my thesis. CaMKII is a protein known to be involved in neuronal and behavioral plasticity and also plays an important part in structural plasticity reorganizing synapses. Therefore it is an interesting candidate for molecular mechanisms underlying MG reorganization in the MBs in the honeybee. Corresponding to the high abundance of CaMKII in the learning center in vertebrates (hippocampus), CaMKII was shown to be enriched in the MBs of the honeybee. Here I first investigated the function of CaMKII in learning and memory formation as from vertebrate work CaMKII is known to be associated with the strengthening of synaptic connections inducing long term potentiation and memory formation. The experimental approach included manipulating CaMKII function using 2 different inhibitors and a specific siRNA to create a CaMKII knockdown phenotype. Afterwards bees were subjected to classical olfactory conditioning which is known to induce stable long-term memory. All bees showed normal learning curves and an intact memory acquisition, short-term and mid-term memory (1 hour retention). However, in all cases long-term memory formation was significantly disrupted (24 and 72 hour retention). These results suggests the necessity of functional CaMKII in the MBs for the induction of both early and late phases of long-term memory in honeybees. The neuronal and molecular bases underlying long-term memory and the resulting plasticity in behavior is key to understanding higher brain function and phenotype plasticity. In this context CaMKII may be an important mediator inducing structural synaptic and neuronal changes in the MB synaptic network.
Accurate information transfer between neurons governs proper brain function. At chemical synapses, communication is mediated via neurotransmitter release from specialized presynaptic intercellular contact sites, so called active zones. Their molecular composition constitutes a precisely arranged framework that sets the stage for synaptic communication.
Active zones contain a variety of proteins that deliver the speed, accuracy and plasticity inherent to neurotransmission. Though, how the molecular arrangement of these proteins influences active zone output is still ambiguous. Elucidating the nanoscopic organization of AZs has been hindered by the diffraction-limited resolution of conventional light microscopy, which is insufficient to resolve the active zone architecture on the nanometer scale. Recently, super-resolution techniques entered the field of neuroscience, which yield the capacity to bridge the gap in resolution between light and electron microscopy without losing molecular specificity. Here, localization microscopy methods are of special interest, as they can potentially deliver quantitative information about molecular distributions, even giving absolute numbers of proteins present within cellular nanodomains.
This thesis puts forward an approach based on conventional immunohistochemistry to quantify endogenous protein organizations in situ by employing direct stochastic optical reconstruction microscopy (dSTORM). Focussing on Bruchpilot (Brp) as a major component of Drosophila active zones, the results show that the cytomatrix at the active zone is composed of units, which comprise on average ~137 Brp molecules, most of which are arranged in approximately 15 heptameric clusters. To test for a quantitative relationship between active zone ultrastructure and synaptic output, Drosophila mutants and electrophysiology were employed. The findings indicate that the precise spatial arrangement of Brp reflects properties of short-term plasticity and distinguishes distinct mechanistic causes of synaptic depression. Moreover, functional diversification could be connected to a heretofore unrecognized ultrastructural gradient along a Drosophila motor neuron.
The Dual Olfactory Pathway in the Honeybee Brain: Sensory Supply and Electrophysiological Properties
(2018)
The olfactory sense is of utmost importance for honeybees, Apis mellifera. Honeybees use olfaction for communication within the hive, for the identification of nest mates and non-nest mates, the localization of food sources, and in case of drones (males), for the detection of the queen and mating. Honeybees, therefore, can serve as excellent model systems for an integrative analysis of an elaborated olfactory system.
To efficiently filter odorants out of the air with their antennae, honeybees possess a multitude of sensilla that contain the olfactory sensory neurons (OSN). Three types of olfactory sensilla are known from honeybee worker antennae: Sensilla trichoidea, Sensilla basiconica and Sensilla placodea. In the sensilla, odorant receptors that are located in the dendritic arborizations of the OSNs transduce the odorant information into electrical information. Approximately 60.000 OSN axons project in two parallel bundles along the antenna into the brain. Before they enter the primary olfactory brain center, the antennal lobe (AL), they diverge into four distinct tracts (T1-T4). OSNs relay onto ~3.000-4.000 local interneurons (LN) and ~900 projection neurons (PN), the output neurons of the AL. The axons of the OSNs together with neurites from LNs and PNs form spheroidal neuropil units, the so-called glomeruli. OSN axons from the four AL input tracts (T1-T4) project into four glomerular clusters. LNs interconnect the AL glomeruli, whereas PNs relay the information to the next brain centers, the mushroom body (MB) - associated with sensory integration, learning and memory - and the lateral horn (LH). In honeybees, PNs project to the MBs and the LH via two separate tracts, the medial and the lateral antennal-lobe tract (m/lALT) which run in parallel in opposing directions. The mALT runs first to the MB and then to the LH, the lALT runs first to the LH and then to the MB. This dual olfactory pathway represents a feature unique to Hymenoptera. Interestingly, both tracts were shown to process information about similar sets of odorants by extracting different features. Individual mALT PNs are more odor specific than lALT PNs. On the other hand, lALT PNs have higher spontaneous and higher odor response action potential (AP) frequencies than mALT PNs. In the MBs, PNs form synapses with ~184.000 Kenyon cells (KC), which are the MB intrinsic neurons. KCs, in contrast to PNs, show almost no spontaneous activity and employ a spatially and temporally sparse code for odor coding.
In manuscript I of my thesis, I investigated whether the differences in specificity of odor responses between m- and lALT are due to differences in the synaptic input. Therefore, I investigated the axonal projection patterns of OSNs housed in S. basiconica in honeybee workers and compared them with S. trichoidea and S. placodea using selective anterograde labeling with fluorescent tracers and confocal- microscopy analyses of axonal projections in AL glomeruli. Axons of S. basiconica-associated OSNs preferentially projected into the T3 input-tract cluster in the AL, whereas the two other types of sensilla did not show a preference for a specific glomerular cluster. T3- associated glomeruli had previously been shown to be innervated by mALT PNs. Interestingly, S. basiconica as well as a number of T3 glomeruli lack in drones. Therefore I set out to determine whether this was associated with the reduction of glomeruli innervated by mALT PNs. Retrograde tracing of mALT PNs in drones and counting of innervated glomeruli showed that the number of mALT-associated glomeruli was strongly reduced in drones compared to workers. The preferential projections of S. basiconica-associated OSNs into T3 glomeruli in female workers together with the reduction of mALT-associated glomeruli in drones support the presence of a female-specific olfactory subsystem that is partly innervated by OSNs from S. basiconica and is associated with mALT projection neurons. As mALT PNs were shown to be more odor specific, I suppose that already the OSNs in this subsystem are more odor specific than lALT associated OSNs. I conclude that this female-specific subsystem allows the worker honeybees to respond adequately to the enormous variety of odorants they experience during their lifetime.
In manuscript II, I investigated the ion channel composition of mALT and lALT PNs and KCs in situ. This approach represents the first study dealing with the honeybee PN and KC ion channel composition under standard conditions in an intact brain preparation. With these recordings I set out to investigate the potential impact of intrinsic neuronal properties on the differences between m- and lALT PNs and on the sparse odor coding properties of KCs. In PNs, I identified a set of Na+ currents and diverse K+ currents depending on voltage and Na+ or Ca2+ that support relatively high spontaneous and odor response AP frequencies. This set of currents did not significantly differ between mALT and lALT PNs, but targets for potential modulation of currents leading to differences in AP frequencies were found between both types of PNs. In contrast to PNs, KCs have very prominent K+ currents, which are likely to contribute to the sparse response fashion observed in KCs. Furthermore, Ca2+ dependent K+ currents were found, which may be of importance for coincidence detection, learning and memory formation.
Finally, I conclude that the differences in odor specificity between m- and lALT PNs are due to their synaptic input from different sets of OSNs and potential processing by LNs. The differences in spontaneous activity between the two tracts may be caused by different neuronal modulation or, in addition, also by interaction with LNs. The temporally sparse representation of odors in KCs is very likely based on the intrinsic KC properties, whereas general excitability and spatial sparseness are likely to be regulated through GABAergic feedback neurons.
Cataglyphis ants are famous for their navigational abilities. They live in hostile habitats where they forage as solitary scavengers covering distances of more than hundred thousand times their body lengths. To return to their nest with a prey item – mainly other dead insects that did not survive the heat – Cataglyphis ants constantly keep track of their directions and distances travelled. The navigational strategy is called path integration, and it enables an ant to return to the nest in a straight line using its home vector. Cataglyphis ants mainly rely on celestial compass cues, like the position of the sun or the UV polarization pattern, to determine directions, and they use an idiothetic step counter and optic flow to measure distances. In addition, they acquire information about visual, olfactory and tactile landmarks, and the wind direction to increase their chances of returning to the nest safe and sound. Cataglyphis’ navigational performance becomes even more impressive if one considers their life style. Most time of their lives, the ants stay underground and perform tasks within the colony. When they start their foraging careers outside the nest, they have to calibrate their compass systems and acquire all information necessary for navigation during subsequent foraging. This navigational toolkit is not instantaneously available, but has to be filled with experience. For that reason, Cataglyphis ants perform a striking behavior for up to three days before actually foraging. These so-called learning walks are crucial for the success as foragers later on. In the present thesis, both the ontogeny and the fine-structure of learning walks has been investigated. Here I show with displacement experiments that Cataglyphis ants need enough space and enough time to perform learning walks. Spatially restricted novices, i. e. naïve ants, could not find back to the nest when tested as foragers later on. Furthermore, ants have to perform several learning walks over 1-3 days to gain landmark information for successful homing as foragers. An increasing number of feeder visits also increases the importance of landmark information, whereas in the beginning ants fully rely on their path-integration vector. Learning walks are well-structured. High-speed video analysis revealed that Cataglyphis ants include species-specific rotational elements in their learning walks. Greek Cataglyphis ants (C. noda and C. aenescens) inhabiting a cluttered pine forest perform voltes, small walked circles, and pirouettes, tight turns about the body axis with frequent stopping phases. During the longest stopping phases, the ants gaze back to their nest entrance. The Tunisian Cataglyphis fortis ants inhabiting featureless saltpans only perform voltes without directed gazes. The function of voltes has not yet been revealed. In contrast, the fine structure of pirouettes suggests that the ants take snapshots of the panorama towards their homing direction to memorize the nest’s surroundings. The most likely hypothesis was that Cataglyphis ants align the gaze directions using their path integrator, which gets directional input from celestial cues during foraging. To test this hypothesis, a manipulation experiment was performed changing the celestial cues above the nest entrance (no sun, no natural polarization pattern, no UV light). The accurately directed gazes to the nest entrance offer an easily quantifiable readout suitable to ask the ants where they expect their nest entrance. Unexpectedly, all novices performing learning walks under artificial sky conditions looked back to the nest entrance. This was especially surprising, because neuronal changes in the mushroom bodies and the central complex receiving visual input could only be induced with the natural sky when comparing test animals with interior workers. The behavioral findings indicated that Cataglyphis ants use another directional reference system to align their gaze directions during the longest stopping phases of learning walk pirouettes. One possibility was the earth’s magnetic field. Indeed, already disarraying the geomagnetic field at the nest entrance with an electromagnetic flat coil indicated that the ants use magnetic information to align their looks back to the nest entrance. To investigate this finding further, ants were confronted with a controlled magnetic field using a Helmholtz coil. Elimination of the horizontal field component led to undirected gaze directions like the disarray did. Rotating the magnetic field about 90°, 180° or -90° shifted the ants’ gaze directions in a predictable manner. Therefore, the earth’s magnetic field is a necessary and sufficient reference system for aligning nest-centered gazes during learning-walk pirouettes. Whether it is additionally used for other navigational purposes, e. g. for calibrating the solar ephemeris, remains to be tested. Maybe the voltes performed by all Cataglyphis ant species investigated so far can help to answer this question..