## 004 Datenverarbeitung; Informatik

### Refine

#### Document Type

- Doctoral Thesis (2)
- Journal article (1)

#### Keywords

- approximation algorithm (3) (remove)

Given points in the plane, connect them using minimum ink. Though the task seems simple, it turns out to be very time consuming. In fact, scientists believe that computers cannot efficiently solve it. So, do we have to resign? This book examines such NP-hard network-design problems, from connectivity problems in graphs to polygonal drawing problems on the plane. First, we observe why it is so hard to optimally solve these problems. Then, we go over to attack them anyway. We develop fast algorithms that find approximate solutions that are very close to the optimal ones. Hence, connecting points with slightly more ink is not hard.

A binary tanglegram is a drawing of a pair of rooted binary trees whose leaf sets are in one-to-one correspondence; matching leaves are connected by inter-tree edges. For applications, for example, in phylogenetics, it is essential that both trees are drawn without edge crossings and that the inter-tree edges have as few crossings as possible. It is known that finding a tanglegram with the minimum number of crossings is NP-hard and that the problem is fixed-parameter tractable with respect to that number.
We prove that under the Unique Games Conjecture there is no constant-factor approximation for binary trees. We show that the problem is NP-hard even if both trees are complete binary trees. For this case we give an O(n 3)-time 2-approximation and a new, simple fixed-parameter algorithm. We show that the maximization version of the dual problem for binary trees can be reduced to a version of MaxCut for which the algorithm of Goemans and Williamson yields a 0.878-approximation.

We consider competitive location problems where two competing providers place their facilities sequentially and users can decide between the competitors. We assume that both competitors act non-cooperatively and aim at maximizing their own benefits. We investigate the complexity and approximability of such problems on graphs, in particular on simple graph classes such as trees and paths. We also develop fast algorithms for single competitive location problems where each provider places a single facilty. Voting location, in contrast, aims at identifying locations that meet social criteria. The provider wants to satisfy the users (customers) of the facility to be opened. In general, there is no location that is favored by all users. Therefore, a satisfactory compromise has to be found. To this end, criteria arising from voting theory are considered. The solution of the location problem is understood as the winner of a virtual election among the users of the facilities, in which the potential locations play the role of the candidates and the users represent the voters. Competitive and voting location problems turn out to be closely related.