Fakultät für Biologie
Refine
Has Fulltext
- yes (55)
Is part of the Bibliography
- yes (55)
Year of publication
Document Type
- Doctoral Thesis (52)
- Journal article (2)
- Master Thesis (1)
Keywords
- Epigenetik (3)
- Genexpression (3)
- Angiogenese (2)
- Biofilm (2)
- Cancer (2)
- Exomsequenzierung (2)
- Guanylatcyclase (2)
- Immunotherapy (2)
- Konsanguinität (2)
- Krebs <Medizin> (2)
Institute
- Fakultät für Biologie (55)
- Graduate School of Life Sciences (22)
- Institut für Humangenetik (5)
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (4)
- Medizinische Fakultät (4)
- Physiologisches Institut (3)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (1)
- Institut für Rechtsmedizin (1)
- Institut für Virologie und Immunbiologie (1)
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (1)
Sonstige beteiligte Institutionen
- EMBL Heidelberg (2)
- Fachhochschule Kaiserslautern, Campus Zweibrücken (1)
- Institut für Medizinische Mikrobiologie und Hygiene der Eberhard-Karls-Universität Tübingen (1)
- Lehrstuhl für Biochemie und molekulare Biologie (1)
- Lehrstuhl für Bioinformatik (1)
- Maastricht University, Maastricht, the Netherlands (1)
- Medizinische Universität Innsbruck (1)
- Queensland University of Technology (1)
EU-Project number / Contract (GA) number
Lung cancer is the main cause of cancer-related deaths worldwide. Despite the availability of several targeted therapies and immunotherapies in the clinics, the prognosis for lung cancer remains poor. A major problem for the low benefit of these therapies is intrinsic and acquired resistance, asking for pre-clinical models for closer investigation of predictive biomarkers for refined personalized medicine and testing of possible combination therapies as well as novel therapeutic approaches to break resistances.
One third of all lung adenocarcinoma harbor mutations in the KRAS gene, of which 39 % are transitions from glycine to cysteine in codon 12 (KRASG12C). Being considered “undruggable” in previous decades, KRASG12C-inhibitors now paved the way into the standard-of-care for lung adenocarcinoma treatment in the clinics. Still, the overall response rates as well as overall survival of patients treated with KRASG12C-inhibitors are sobering. Therefore, 3D KRASG12C-biomarker in vitro models were developed based on a decellularized porcine jejunum (SISmuc) using commercial and PDX-derived cell lines and characterized in regards of epithelial-mesenchymal-transition (EMT), stemness, proliferation, invasion and c-MYC expression as well as the sensitivity towards KRASG12C-inhibiton. The phenotype of lung tumors harboring KRAS mutations together with a c-MYC overexpression described in the literature regarding invasion and proliferation for in vivo models was well represented in the SISmuc models. A higher resistance towards targeted therapies was validated in the 3D models compared to 2D cultures, while reduced viability after treatment with combination therapies were exclusively observed in the 3D models. In the test system neither EMT, stemness nor the c-MYC expression were directly predictive for drug sensitivity. Testing of a panel of combination therapies, a sensitizing effect of the aurora kinase A (AURKA) inhibitor alisertib for the KRASG12C-inhibitor ARS-1620 directly correlating with the level of c-MYC expression in the corresponding 3D models was observed. Thereby, the capability of SISmuc tumor models as an in vitro test system for patient stratification was demonstrated, holding the possibility to reduce animal experiments.
Besides targeted therapies the treatment of NSCLC with oncolytic viruses (OVs) is a promising approach. However, a lack of in vitro models to test novel OVs limits the transfer from bench to bedside. In this study, 3D NSCLC models based on the SISmuc were evaluated for their capability to perform efficacy and risk assessment of oncolytic viruses (OVs) in a pre-clinical setting. Hereby, the infection of cocultures of tumor cells and fibroblasts on the SISmuc with provided viruses demonstrated that in contrast to a wildtype herpes simplex virus 1 (HSV-1) based OV, the attenuated version of the OV exhibited specificity for NSCLC cells with a more advanced and highly proliferative phenotype, while fibroblasts were no longer permissive for infection. This approach introduced SISmuc tumor models as novel test system for in vitro validation of OVs.
Finally, a workflow for validating the efficacy of anti-cancer therapies in 3D tumor spheroids was established for the transfer to an automated platform based on a two-arm-robot system. In a proof-of-concept process, H358 spheroids were characterized and treated with the KRASG12C-inhibitor ARS-1620. A time- and dose-dependent reduction of the spheroid area after treatment was defined together with a live/dead-staining as easy-to-perform and cost-effective assays for automated drug testing that can be readily performed in situ in an automated system.
Laut des aktuellen Reports der Weltgesundheitsorganisation sind ca. 466 Millionen Menschen weltweit von einer Hörstörung (HS) betroffen. Durch die enorme Heterogenität und die klinische Variabilität, die diese Erkrankung ausmacht, und viele bisher nicht mit HS assoziierte Gene, bleibt ein großer Teil der erblich bedingten HS in vielen Familien unaufgeklärt. Die Entwicklung moderner Techniken, wie die Next-Generation Sequenzierung (NGS) und der Fortschritt bei der Untersuchung von Modellorganismen trugen jedoch in den letzten Jahren immens dazu bei, neue Gene zu identifizieren, die innerhalb des auditorischen Signalwegs oder damit assoziierten Strukturen beteiligt sind. Die vorliegende Arbeit umfasst Ergebnisse dreier Veröffentlichungen, in denen iranische und pakistanische Familien und eine deutsche Familie mit erblich bedingter HS untersucht und neue, krankheitsverursachende Varianten identifiziert und funktionell charakterisiert wurden. Im ersten Abschnitt konnten zwei neue rezessive Varianten im CDC14A-Gen als krankheitsverursachend identifiziert werden, die zu einem potentiellen Funktionsverlust des kodierten Proteins in einer iranischen und einer pakistanischen Familie führen. Mit Hilfe einer funktionellen Charakterisierung auf RNA-Ebene (Spleiß-Assay und RT-qPCR) konnte der Funktionsverlust beider Varianten bestätigt werden. Der zweite Abschnitt umfasst eine deutsche Familie mit sieben von einer HS betroffenen Familienmitgliedern, in der eine heterozygote missense Variante in MYO3A identifiziert wurde. In der vorliegenden Arbeit konnte somit die erste autosomal dominante Variante in einer europäischen Familie mit einer bilingualen, sensorineuralen Hochtonschwerhörigkeit beschrieben werden und der dominante Charakter von MYO3A bestätigt werden. Im dritten Abschnitt konnten die krankheitsverursachenden Varianten in 13 Familien aus einer Kohorte mit 21 pakistanischen Familien mit einer syndromalen und nicht-syndromalen HS ausfindig gemacht werden. Hierbei wurden sowohl bekannte, als auch bisher nicht beschriebene Varianten detektiert. Die Aufklärungsrate innerhalb dieser Kohorte betrug 61,9% und es konnte somit das Spektrum syndromaler und nicht-syndromaler HS erweitert werden. Der letzte Abschnitt dieser Arbeit beschreibt eine iranische Familie mit einer milden HS und milden Intelligenzminderung, in der eine homozygote missense Variante im Kandidatengen DBN1 ausfindig gemacht wurde. Um die Funktion und die Auswirkungen eines potentiellen Verlusts des codierten Proteins Drebrin zu untersuchen, wurden immunhistochemische Färbungen und auditorische Messungen an Dbn1 Knockout (KO)-Mäusen durchgeführt. Hierbei konnte eine Expression innerhalb der Nervenfasern, die innere Haarzellen innervieren, nachgewiesen werden. Eine leicht verlängerte Latenz für die ABR-Welle IV in KO-Mäusen im Vergleich zum Wildtyp ergab den Hinweis auf einen Defekt innerhalb des zentralen auditorischen Signalwegs, der möglicherweise mit einer Sprachverarbeitungsstörung im Menschen korreliert.
Regulatory T cells (Tregs) are the masters of immune regulation controlling inflammation and tolerance, tissue repair and homeostasis. Multiple immunological diseases result from altered Treg frequencies and Treg dysfunction. We hypothesized that augmenting Treg function and numbers would prevent inflammatory disease whereas inhibiting or depleting Tregs would improve cancer immunotherapy.
In the first part of this thesis, we explored whether in vivo activation and expansion of Tregs would impair acute graft-versus-host disease (aGvHD). In this inflammatory disease, Tregs are highly pathophysiological relevant and their adoptive transfer proved beneficial on disease outcome in preclinical models and clinical studies. IL-2 has been recognized as a key cytokine for Treg function. Yet, attempts in translating Treg expansion via IL-2 have remained challenging, due to IL-2s extremely broad action on other cell types including effector T cells, NK cells, eosinophils and vascular leakage syndrome, and importantly, due to poor pharmacokinetics in vivo. We addressed the latter issue using an IL-2-IgG-fusion protein (irrIgG-IL-2) with improved serum retention and demonstrated profound Treg expansion in vivo in FoxP3-luciferase reporter mice. Further, we augmented Treg numbers and function via the selective-TNF based agonists of TNFR2 (STAR2). Subsequently, we tested a next-generation TNFR2 agonist, termed NewSTAR, which proved even more effective. TNFR2 stimulation augmented Treg numbers and function and was as good as or even superior to the IL-2 strategy. Finally, in a mouse model of aGvHD we proved the clinical relevance of Treg expansion and activation with irrIgG-IL-2, STAR2 and NewSTAR. Notably, the TNFR2 stimulating constructs were outstanding as we observed not the IL-2 prototypic effects on other cell populations and no severe side effects.
In the second part of this thesis, we explored Tregs in pancreatic ductal adenocarcinoma (PDAC) and developed targeting strategies. Among several tumor entities in which Tregs impact survival, preclinical and clinical data demonstrated their negative role on PDAC. In our studies we employed the orthotopic syngeneic Panc02 model in immunocompetent mice. Based on flow cytometric analysis of the tumor microenvironment we propose TIGIT and TNFRSF members as novel therapeutic targets. Surprisingly, we found that blocking TNFR2 did not interfere with intratumoral Treg accumulation. However, we decreased the highly abundant intratumoral Tregs when we disrupted the tumor extracellular matrix. In PDAC, Treg manipulation alone did not lead to tumor regression and we propose that an additional immune boost may be necessary for efficient tumor immune surveillance and cancer clearance. This contrasts with aGvHD, in which Treg manipulation alone was sufficient to improve disease outcome.
Conclusively, we demonstrated the enormous medical benefit of Treg manipulation. Our promising data obtained with our newly developed powerful tools highlight the potential to translate our findings into clinical practice to therapeutically target human Tregs in patients. With novel TNFR2 agonists (STAR2, NewSTAR) we augmented Treg numbers and function as (or even more) effectively than with IL-2, without causing adverse side effects. Importantly, exogenous in vivo Treg expansion protected mice from aGvHD. For the therapy of PDAC, we identified novel targets on Tregs, notably TIGIT and members of the TNFRSF. We demonstrated that altering the extracellular tumor matrix can efficiently disrupt the Treg abundance in tumors. These novel targeting strategies appear as attractive new treatment options and they may benefit patients suffering from inflammatory disease and cancer in the future.
The research that is compiled in this thesis can be divided in two parts. The first part, consisting of four chapters, is centered around the role of epigenetic dysregulation in the etiopathophysiology of sporadic alzheimer's disease (sAD). In addition to providing insights into the most recent developments in neuroepigenomic studies of this disease, the first part of the thesis also touches upon remaining challenges, and provides a future outlook on possible developments in the field. The second part, which includes three more chapters, is focused on the application of induced pluripotent stem cell (iPSC)-based disease models for the study of AD, including but not limited to mechanistic studies on epigenetic dysregulation using this platform. Aside from outlining the research that has been conducted using iPSC-based models for sAD to date, the second part of the thesis also provides insights into the acquisition of disease-relevant neural cultures based on directed differentiation of iPSCs, and furthermore includes an experimental approach for the establishment of such a model system.
Glioblastoma (GBM) sind bösartige hirneigene Tumore, deren schlechte Prognose einer innovativen Therapie bedarf. Aus diesem Grund wurde ein neuer Therapieansatz entwickelt, der auf einer lokalen Ultraschall-vermittelten Zytostatika Applikation beruht. Hierfür wurden stabile Microbubbles (MB) bestehend aus Phospholipiden synthetisiert. Es konnte gezeigt werden, dass MB als auch fokussierter Ultraschall niedriger Intensität (LIFU) keinen negativen Einfluss auf GBM-Zellen hat. MB hingegen konnten mittels LIFU destruiert werden, wodurch das in den MB eingeschlossene Chemotherapeutikum freigesetzt werden kann. Es wurden verschiedene Platin(II)- und Palladium(II)-Komplexe auf GBM Zellen getestet. Zur Beladung der MB wurde Doxorubicin (Dox) verwendet. Es konnte eine Beladungseffizienz der MB mit Dox von 52 % erreicht werden, auch eine Aufreinigung dieser mittel Ionenaustausch-Chromatographie und Dialyse war erfolgreich. Die Austestung der mit Dox beladenen MB (MBDox) erfolgte auf GBM-Zellen in 2D- und 3D-Zelkulturmodellen. Dabei zeigte sich, dass die Behandlung mit MBDox und LIFU für 48 h eine zytotoxische Wirkung hatte, die sich signifikant von der Behandlung mit MBDox ohne LIFU unterschied. Zur Austestung der MBDox in 3D-Zellkulturmodellen wurden zwei Scaffold-Systeme eingesetzt. Es zeigte sich in den Versuchen, dass MBDox mit LIFU im Vergleich zu MBDox ohne LIFU Applikation einen zytotoxischen Effekt auf GBM-Zellen haben. Somit konnte die Wirksamkeit der Zytostatika Applikation mittels MB und LIFU in 2D- und 3D-Zellkulturmodellen erfolgreich etabliert werden. Als weiterer Schritt wurden zwei 3D in vitro Modelle erarbeitet. Dabei wurden zunächst organotypische hippocampale Slice Kulturen (organotypic hippocampal brain slice cultures, OHSC) aus der Maus hergestellt und anschließend mit fluoreszent-markierten Mikrotumoren aus GBM-Zelllinien, Primärzellen (PZ) und aus Patienten generierten GBM-Organoiden hergestellt. Diese GBM-Modelle wurden mit Tumor Treating Fields (TTFields) behandelt. Dabei war eine Abnahme der Tumorgröße von Mikrotumoren aus GBM-Zellen und PZ unter TTFields-Behandlung für 72 h messbar. Als weiteres in vitro Modell wurden humane Tumorschnitte aus intraoperativ entferntem GBM-Patientenmaterial hergestellt. Die Schnitte wiesen ein heterogenes Ansprechen nach 72 h TTFields-Applikation auf. Dies spiegelt die Heterogenität des GBM sehr gut wider und bestärkt die Eignung des Modelles zur Untersuchung von neuen Therapieansätzen zur Behandlung von GBM.
MDSCs are suppressive immune cells with a high relevance in various pathologies including cancer, autoimmunity, and chronic infections. Surface marker expression of MDSCs resembles monocytes and neutrophils which have immunostimulatory functions instead of suppressing T cells. Therefore, finding specific surface markers for MDSCs is important for MDSC research and therapeutic MDSC manipulation. In this study, we analyzed if the integrin VLA-1 has the potential as a novel MDSC marker. VLA-1 was expressed by M-MDSCs but not by G-MDSCs as well as by Teff cells. VLA-1 deficiency did not impact iNOS expression, the distribution of M-MDSC and G-MDSC subsets, and the suppressive capacity of MDSCs towards naïve and Teff cells in vitro. In mice, VLA-1 had no effect on the homing capability of MDSCs to the spleen, which is a major reservoir for MDSCs. Since the splenic red pulp contains collagen IV and VLA-1 binds collagen IV with a high affinity, we found MDSCs and Teff cells in this area as expected. We showed that T cell suppression in the spleen, indicated by reduced T cell recovery and proliferation as well as increased apoptosis and cell death, partially depended on VLA-1 expression by the MDSCs. In a mouse model of multiple sclerosis, MDSC injection prior to disease onset led to a decrease of the disease score, and this effect was significantly reduced when MDSCs were VLA-1 deficient. The expression of Sema7A by Teff cells, a ligand for VLA-1 which is implicated in negative T cell regulation, resulted in a slightly stronger Teff cell suppression by MDSCs compared to Sema7A deficient T cells. Live cell imaging and intravital 2-photon microscopy showed that the interaction time of MDSCs and Teff cells was shorter when MDSCs lacked VLA 1 expression, however VLA-1 expression had no impact on MDSC mobility. Therefore, the VLA-1-dependent interaction of MDSC and Teff cells on collagen IV in the splenic red pulp is implicated MDSC-mediated Teff cell suppression.
The HIV-1 Vif protein is essential for viral fitness and pathogenicity. Vif decreases expression of cellular restriction factors APOBEC3G (A3G), A3F, A3D and A3H, which inhibit HIV-1 replication by inducing hypermutation during reverse transcription. Vif counteracts A3G at several levels (transcription, translation, and protein degradation) that altogether reduce the levels of A3G in cells and prevent its incorporation into viral particles. How Vif affects A3G translation remains unclear. Here, we uncovered the importance of a short conserved uORF (upstream ORF) located within two critical stem-loop structures of the 5′ untranslated region (5′-UTR) of A3G mRNA for this process. A3G translation occurs through a combination of leaky scanning and translation re-initiation and the presence of an intact uORF decreases the extent of global A3G translation under normal conditions. Interestingly, the uORF is also absolutely required for Vif-mediated translation inhibition and redirection of A3G mRNA into stress granules. Overall, we discovered that A3G translation is regulated by a small uORF conserved in the human population and that Vif uses this specific feature to repress its translation.
The holy grail of structural biology is to study a protein in situ, and this goal has been fast approaching since the resolution revolution and the achievement of atomic resolution. A cell's interior is not a dilute environment, and proteins have evolved to fold and function as needed in that environment; as such, an investigation of a cellular component should ideally include the full complexity of the cellular environment. Imaging whole cells in three dimensions using electron cryotomography is the best method to accomplish this goal, but it comes with a limitation on sample thickness and produces noisy data unamenable to direct analysis. This thesis establishes a novel workflow to systematically analyse whole-cell electron cryotomography data in three dimensions and to find and identify instances of protein complexes in the data to set up a determination of their structure and identity for success. Mycoplasma pneumoniae is a very small parasitic bacterium with fewer than 700 protein-coding genes, is thin enough and small enough to be imaged in large quantities by electron cryotomography, and can grow directly on the grids used for imaging, making it ideal for exploratory studies in structural proteomics. As part of the workflow, a methodology for training deep-learning-based particle-picking models is established.
As a proof of principle, a dataset of whole-cell Mycoplasma pneumoniae tomograms is used with this workflow to characterize a novel membrane-associated complex observed in the data. Ultimately, 25431 such particles are picked from 353 tomograms and refined to a density map with a resolution of 11 Å. Making good use of orthogonal datasets to filter search space and verify results, structures were predicted for candidate proteins and checked for suitable fit in the density map. In the end, with this approach, nine proteins were found to be part of the complex, which appears to be associated with chaperone activity and interact with translocon machinery.
Visual proteomics refers to the ultimate potential of in situ electron cryotomography: the comprehensive interpretation of tomograms. The workflow presented here is demonstrated to help in reaching that potential.
Attention-deficit/hyperactivity disorder (ADHD) is the most prevalent neurodevelopmental disorder described in psychiatry today. ADHD arises during early childhood and is characterized by an age-inappropriate level of inattention, hyperactivity, impulsivity, and partially emotional dysregulation. Besides, substantial psychiatric comorbidity further broadens the symptomatic spectrum. Despite advances in ADHD research by genetic- and imaging studies, the etiopathogenesis of ADHD remains largely unclear. Twin studies suggest a heritability of 70-80 % that, based on genome-wide investigations, is assumed to be polygenic and a mixed composite of small and large, common and rare genetic variants. In recent years the number of genetic risk candidates is continuously increased. However, for most, a biological link to neuropathology and symptomatology of the patient is still missing. Uncovering this link is vital for a better understanding of the disorder, the identification of new treatment targets, and therefore the development of a more targeted and possibly personalized therapy.
The present thesis addresses the issue for the ADHD risk candidates GRM8, FOXP2, and GAD1. By establishing loss of function zebrafish models, using CRISPR/Cas9 derived mutagenesis and antisense oligonucleotides, and studying them for morphological, functional, and behavioral alterations, it provides novel insights into the candidate's contribution to neuropathology and ADHD associated phenotypes. Using locomotor activity as behavioral read-out, the present work identified a genetic and functional implication of Grm8a, Grm8b, Foxp2, and Gad1b in ADHD associated hyperactivity. Further, it provides substantial evidence that the function of Grm8a, Grm8b, Foxp2, and Gad1b in activity regulation involves GABAergic signaling. Preliminary indications suggest that the three candidates interfere with GABAergic signaling in the ventral forebrain/striatum. However, according to present and previous data, via different biological mechanisms such as GABA synthesis, transmitter release regulation, synapse formation and/or transcriptional regulation of synaptic components. Intriguingly, this work further demonstrates that the activity regulating circuit, affected upon Foxp2 and Gad1b loss of function, is involved in the therapeutic effect mechanism of methylphenidate. Altogether, the present thesis identified altered GABAergic signaling in activity regulating circuits in, presumably, the ventral forebrain as neuropathological underpinning of ADHD associated hyperactivity. Further, it demonstrates altered GABAergic signaling as mechanistic link between the genetic disruption of Grm8a, Grm8b, Foxp2, and Gad1b and ADHD symptomatology like hyperactivity. Thus, this thesis highlights GABAergic signaling in activity regulating circuits and, in this context, Grm8a, Grm8b, Foxp2, and Gad1b as exciting targets for future investigations on ADHD etiopathogenesis and the development of novel therapeutic interventions for ADHD related hyperactivity. Additionally, thigmotaxis measurements suggest Grm8a, Grm8b, and Gad1b as interesting candidates for prospective studies on comorbid anxiety in ADHD. Furthermore, expression analysis in foxp2 mutants demonstrates Foxp2 as regulator of ADHD associated gene sets and neurodevelopmental disorder (NDD) overarching genetic and functional networks with possible implications for ADHD polygenicity and comorbidity. Finally, with the characterization of gene expression patterns and the generation and validation of genetic zebrafish models for Grm8a, Grm8b, Foxp2, and Gad1b, the present thesis laid the groundwork for future research efforts, for instance, the identification of the functional circuit(s) and biological mechanism(s) by which Grm8a, Grm8b, Foxp2, and Gad1b loss of function interfere with GABAergic signaling and ultimately induce hyperactivity.
Clostridioides difficile is a bacterial species well known for its ability to cause C. difficile
infection (also known as CDI). The investigation of the role of this species in the human
gut has been so far dominated by a disease-centred perspective, focused on studying
C. difficile in relation to its associated disease.
In this context, the first aim of this thesis was to combine publicly available
metagenomic data to analyse the microbial composition of stool samples from patients
diagnosed with CDI, with a particular focus on identifying a CDI-specific microbial
signature.
However, similarly to many other bacterial species inhabiting the human gut, C.
difficile association with disease is not valid in absolute terms, as C. difficile can be
found also among healthy subjects. Further aims of this thesis were to 1) identify
potential C. difficile reservoirs by screening a wide range of habitats, hosts, body sites
and age groups, and characterize the biotic context associated with C. difficile
presence, and 2) investigate C. difficile within-species diversity and its toxigenic
potential across different age groups.
The first part of the thesis starts with the description of the concepts and
definitions used to identify bacterial species and within-species diversity, and then
proceeds to provide an overview of the bacterial species at the centre of my
investigation, C. difficile. The first Chapter includes a detailed description of the
discovery, biology and physiology of this clinically relevant species, followed by an
overview of the diagnostic protocols used in the clinical setting to diagnose CDI.
The second part of the thesis describes the methodology used to investigate
the questions mentioned above, while the third part presents the results of such
investigative effort. I first show that C. difficile could be found in only a fraction of the
CDI samples and that simultaneous colonization of multiple enteropathogenic species
able to cause CDI-like clinical manifestations is more common than previously
thought, raising concerns about CDI overdiagnosis. I then show that the CDIassociated
gut microbiome is characterized by a specific microbial signature,
distinguishable from the community composition associated with non-CDI diarrhea.
Beyond the nosocomial and CDI context, I show that while rarely found in adults, C.
difficile is a common member of the infant gut microbiome, where its presence is
associated with multiple indicators typical of a desirable healthy microbiome
development.
In addition, I describe C. difficile extensive carriage among asymptomatic
subjects, of all age groups and a potentially novel clade of C. difficile identified
exclusively among infants.
Finally, I discuss the limitations, challenges and future perspectives of my
investigation.