Institut für Mathematik
Refine
Has Fulltext
- yes (235)
Is part of the Bibliography
- yes (235)
Year of publication
Document Type
- Doctoral Thesis (133)
- Journal article (80)
- Book (5)
- Other (4)
- Report (4)
- Master Thesis (3)
- Conference Proceeding (2)
- Preprint (2)
- Book article / Book chapter (1)
- Review (1)
Keywords
- Optimale Kontrolle (12)
- Optimierung (9)
- Extremwertstatistik (8)
- optimal control (8)
- Mathematik (7)
- Nash-Gleichgewicht (7)
- Newton-Verfahren (7)
- Nichtlineare Optimierung (6)
- Finite-Elemente-Methode (5)
- Mathematikunterricht (5)
Institute
- Institut für Mathematik (235)
- Augenklinik und Poliklinik (2)
- Institut für Virologie und Immunbiologie (2)
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (2)
- Theodor-Boveri-Institut für Biowissenschaften (2)
- Graduate School of Science and Technology (1)
- Institut für Informatik (1)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (1)
- Medizinische Klinik und Poliklinik II (1)
- Missionsärztliche Klinik (1)
Sonstige beteiligte Institutionen
ResearcherID
- C-2593-2016 (1)
EU-Project number / Contract (GA) number
- 304617 (2)
This quasi-experimental study examines the combined effect of concrete and virtual manipulatives on fifth-grade students’ mathematics achievement. In comparison to traditional teaching methods, the integration of manipulatives has proven to be effective in advancing mathematical achievement. The research, conducted with Pakistani students, targeted six different mathematical concepts from the fifth-grade curriculum. Two sections from the school located in Lahore, Punjab were assigned as the control and experimental groups. The intervention spanned 12-week, with the experimental group receiving instructions incorporating math manipulatives, while the control group underwent traditional teacher exposition method. Two different mathematics achievement tests (Pre/Post-MAT), developed and piloted by the researcher, were administered prior and post to intervention. Statistical analyses, employing one-way ANCOVA, mixed between-within subject ANOVA and paired sample t-tests, revealed significant progress in post-test scores for all students in the experimental group, regardless of their initial achievement levels. Although low-achieving students in the control group also exhibit a little improvement, the extent was not as pronounced as in the experimental group. The study concludes that the applicability of concrete and virtual manipulatives simultaneously, positively effects the achievement levels of fifth-grade students, providing valuable insights for educators and learners to enhance mathematics education.
The thesis presents novel numerical methods for different conservation laws. The numerical methods are designed to ensure that they can be implemented efficiently on parallel computing platforms.In particular, the thesis presents numerical methods for uncertainty quantification of conservation laws with discontinuous flux, numerical methods for arbitrary Lagrangian-Eulerian methods for compressible flows and for kinetic formulation of conservation laws.
We propose a BGK model of the quantum Boltzmann equation for gas mixtures. We also provide a sufficient condition that guarantees the existence of equilibrium coefficients so that the model shares the same conservation laws and
-theorem with the quantum Boltzmann equation. Unlike the classical BGK for gas mixtures, the equilibrium coefficients of the local equilibriums for quantum multi-species gases are defined through highly nonlinear relations that are not explicitly solvable. We verify in a unified way that such nonlinear relations uniquely determine the equilibrium coefficients under the condition, leading to the well-definedness of our model.
In this note, we give a sufficient condition for the existence of Hölder-type solutions to a class of fractional initial value problems involving Caputo derivatives. Since imposing (classical or general) global Lipschitz conditions on the nonlinear operators involved leads to degeneracy phenomena, the main emphasis is put on local Lipschitz conditions or fixed point principles of Schauder and Darbo type. To this end, we study continuity and boundedness conditions for linear Riemann-Liouville operators and nonlinear Nemytskij operators in Hölder spaces of integral type which have much better properties than classical Hölder spaces.
The core diagram of a double Lie algebroid consists of the core of the double Lie algebroid, together with the two core-anchor maps to the sides of the double Lie algebroid. If these two core-anchors are surjective, then the double Lie algebroid and its core diagram are called transitive. This paper establishes an equivalence between transitive double Lie algebroids, and transitive core diagrams over a fixed base manifold. In other words, it proves that a transitive double Lie algebroid is completely determined by its core diagram.
The comma double Lie algebroid associated to a morphism of Lie algebroids is defined. If the latter morphism is one of the core-anchors of a transitive core diagram, then the comma double algebroid can be quotiented out by the second core-anchor, yielding a transitive double Lie algebroid, which is the one that is equivalent to the transitive core diagram.
Brown's and Mackenzie's equivalence of transitive core diagrams (of Lie groupoids) with transitive double Lie groupoids is then used in order to show that a transitive double Lie algebroid with integrable sides and core is automatically integrable to a transitive double Lie groupoid.
The article deals with the pedagogical content knowledge of mathematical modelling as part of the professional competence of pre-service teachers. With the help of a test developed for this purpose from a conceptual model, we examine whether this pedagogical content knowledge can be promoted in its different facets—especially knowledge about modelling tasks and about interventions—by suitable university seminars. For this purpose, the test was administered to three groups in a seminar for the teaching of mathematical modelling: (1) to those respondents who created their own modelling tasks for use with students, (2) to those trained to intervene in mathematical modelling processes, and (3) participating students who are not required to address mathematical modelling. The findings of the study—based on variance analysis—indicate that certain facets (knowledge of modelling tasks, modelling processes, and interventions) have increased significantly in both experimental groups but to varying degrees. By contrast, pre-service teachers in the control group demonstrated no significant change to their level of pedagogical content knowledge.
Optimization problems with composite functions consist of an objective function which is the sum of a smooth and a (convex) nonsmooth term. This particular structure is exploited by the class of proximal gradient methods and some of their generalizations like proximal Newton and quasi-Newton methods. The current literature on these classes of methods almost exclusively considers the case where also the smooth term is convex. Here we present a globalized proximal Newton-type method which allows the smooth term to be nonconvex. The method is shown to have nice global and local convergence properties, and some numerical results indicate that this method is very promising also from a practical point of view.
Physical regimes characterized by low Mach numbers and steep stratifications pose severe challenges to standard finite volume methods. We present three new methods specifically designed to navigate these challenges by being both low Mach compliant and well-balanced. These properties are crucial for numerical methods to efficiently and accurately compute solutions in the regimes considered.
First, we concentrate on the construction of an approximate Riemann solver within Godunov-type finite volume methods. A new relaxation system gives rise to a two-speed relaxation solver for the Euler equations with gravity. Derived from fundamental mathematical principles, this solver reduces the artificial dissipation in the subsonic regime and preserves hydrostatic equilibria. The solver is particularly stable as it satisfies a discrete entropy inequality, preserves positivity of density and internal energy, and suppresses checkerboard modes.
The second scheme is designed to solve the equations of ideal MHD and combines different approaches. In order to deal with low Mach numbers, it makes use of a low-dissipation version of the HLLD solver and a partially implicit time discretization to relax the CFL time step constraint. A Deviation Well-Balancing method is employed to preserve a priori known magnetohydrostatic equilibria and thereby reduces the magnitude of spatial discretization errors in strongly stratified setups.
The third scheme relies on an IMEX approach based on a splitting of the MHD equations. The slow scale part of the system is discretized by a time-explicit Godunov-type method, whereas the fast scale part is discretized implicitly by central finite differences. Numerical dissipation terms and CFL time step restriction of the method depend solely on the slow waves of the explicit part, making the method particularly suited for subsonic regimes. Deviation Well-Balancing ensures the preservation of a priori known magnetohydrostatic equilibria.
The three schemes are applied to various numerical experiments for the compressible Euler and ideal MHD equations, demonstrating their ability to accurately simulate flows in regimes with low Mach numbers and strong stratification even on coarse grids.
Coisotropic algebras consist of triples of algebras for which a reduction can be defined and unify in a very algebraic fashion coisotropic reduction in several settings. In this paper, we study the theory of (formal) deformation of coisotropic algebras showing that deformations are governed by suitable coisotropic DGLAs. We define a deformation functor and prove that it commutes with reduction. Finally, we study the obstructions to existence and uniqueness of coisotropic algebras and present some geometric examples.