## Institut für Mathematik

### Refine

#### Has Fulltext

- yes (222)

#### Is part of the Bibliography

- yes (222)

#### Year of publication

#### Document Type

- Doctoral Thesis (128)
- Journal article (73)
- Book (5)
- Report (4)
- Master Thesis (3)
- Other (3)
- Conference Proceeding (2)
- Preprint (2)
- Book article / Book chapter (1)
- Review (1)

#### Keywords

- Optimale Kontrolle (11)
- Extremwertstatistik (8)
- Optimierung (8)
- optimal control (8)
- Nash-Gleichgewicht (7)
- Newton-Verfahren (7)
- Mathematik (6)
- Nichtlineare Optimierung (6)
- Mathematikunterricht (5)
- Stabilität (5)

#### Institute

- Institut für Mathematik (222)
- Augenklinik und Poliklinik (2)
- Institut für Virologie und Immunbiologie (2)
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (2)
- Theodor-Boveri-Institut für Biowissenschaften (2)
- Graduate School of Science and Technology (1)
- Institut für Informatik (1)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (1)
- Medizinische Klinik und Poliklinik II (1)
- Missionsärztliche Klinik (1)

#### Sonstige beteiligte Institutionen

#### ResearcherID

- C-2593-2016 (1)

#### EU-Project number / Contract (GA) number

- 304617 (2)

Providing adaptive, independence-preserving and theory-guided support to students in dealing with real-world problems in mathematics lessons is a major challenge for teachers in their professional practice. This paper examines this challenge in the context of simulations and mathematical modelling with digital tools: in addition to mathematical difficulties when autonomously working out individual solutions, students may also experience challenges when using digital tools. These challenges need to be closely examined and diagnosed, and might – if necessary – have to be overcome by intervention in such a way that the students can subsequently continue working independently. Thus, if a difficulty arises in the working process, two knowledge dimensions are necessary in order to provide adapted support to students. For teaching simulations and mathematical modelling with digital tools, more specifically, these knowledge dimensions are: pedagogical content knowledge about simulation and modelling processes supported by digital tools (this includes knowledge about phases and difficulties in the working process) and pedagogical content knowledge about interventions during the mentioned processes (focussing on characteristics of suitable interventions as well as their implementation and effects on the students’ working process). The two knowledge dimensions represent cognitive dispositions as the basis for the conceptualisation and operationalisation of a so-called adaptive intervention competence for teaching simulations and mathematical modelling with digital tools. In our article, we present a domain-specific process model and distinguish different types of teacher interventions. Then we describe the design and content of a university course at two German universities aiming to promote this domain-specific professional adaptive intervention competence, among others. In a study using a quasi-experimental pre-post design (N = 146), we confirm that the structure of cognitive dispositions of adaptive intervention competence for teaching simulations and mathematical modelling with digital tools can be described empirically by a two-dimensional model. In addition, the effectiveness of the course is examined and confirmed quantitatively. Finally, the results are discussed, especially against the background of the sample and the research design, and conclusions are derived for possibilities of promoting professional adaptive intervention competence in university courses.

The goal of this thesis is to study the topological and algebraic properties of the quasiconformal automorphism groups of simply and multiply connected domains in the complex plain, in which the quasiconformal automorphism groups are endowed with the supremum metric on the underlying domain. More precisely, questions concerning central topological properties such as (local) compactness, (path)-connectedness and separability and their dependence on the boundary of the corresponding domains are studied, as well as completeness with respect to the supremum metric. Moreover, special subsets of the quasiconformal automorphism group of the unit disk are investigated, and concrete quasiconformal automorphisms are constructed. Finally, a possible application of quasiconformal unit disk automorphisms to symmetric cryptography is presented, in which a quasiconformal cryptosystem is defined and studied.

For a connected real Lie group G we consider the canonical standard-ordered star product arising from the canonical global symbol calculus based on the half-commutator connection of G. This star product trivially converges on polynomial functions on T\(^*\)G thanks to its homogeneity. We define a nuclear Fréchet algebra of certain analytic functions on T\(^*\)G, for which the standard-ordered star product is shown to be a well-defined continuous multiplication, depending holomorphically on the deformation parameter \(\hbar\). This nuclear Fréchet algebra is realized as the completed (projective) tensor product of a nuclear Fréchet algebra of entire functions on G with an appropriate nuclear Fréchet algebra of functions on \({\mathfrak {g}}^*\). The passage to the Weyl-ordered star product, i.e. the Gutt star product on T\(^*\)G, is shown to preserve this function space, yielding the continuity of the Gutt star product with holomorphic dependence on \(\hbar\).

Let (ϕ\(_t\))\(_{t≥0}\) be a semigroup of holomorphic functions in the unit disk \(\mathbb {D}\) and K a compact subset of \(\mathbb {D}\). We investigate the conditions under which the backward orbit of K under the semigroup exists. Subsequently, the geometric characteristics, as well as, potential theoretic quantities for the backward orbit of K are examined. More specifically, results are obtained concerning the asymptotic behavior of its hyperbolic area and diameter, the harmonic measure and the capacity of the condenser that K forms with the unit disk.

This paper studies differential graded modules and representations up to homotopy of Lie n-algebroids, for general \(n\in {\mathbb {N}}\). The adjoint and coadjoint modules are described, and the corresponding split versions of the adjoint and coadjoint representations up to homotopy are explained. In particular, the case of Lie 2-algebroids is analysed in detail. The compatibility of a Poisson bracket with the homological vector field of a Lie n-algebroid is shown to be equivalent to a morphism from the coadjoint module to the adjoint module, leading to an alternative characterisation of non-degeneracy of higher Poisson structures. Moreover, the Weil algebra of a Lie n-algebroid is computed explicitly in terms of splittings, and representations up to homotopy of Lie n-algebroids are used to encode decomposed VB-Lie n-algebroid structures on double vector bundles.

We analyze the mathematical models of two classes of physical phenomena. The first class of phenomena we consider is the interaction between one or more insulating rigid bodies and an electrically conducting fluid, inside of which the bodies are contained, as well as the electromagnetic fields trespassing both of the materials. We take into account both the cases of incompressible and compressible fluids. In both cases our main result yields the existence of weak solutions to the associated system of partial differential equations, respectively. The proofs of these results are built upon hybrid discrete-continuous approximation schemes: Parts of the systems are discretized with respect to time in order to deal with the solution-dependent test functions in the induction equation. The remaining parts are treated as continuous equations on the small intervals between consecutive discrete time points, allowing us to employ techniques which do not transfer to the discretized setting. Moreover, the solution-dependent test functions in the momentum equation are handled via the use of classical penalization methods.
The second class of phenomena we consider is the evolution of a magnetoelastic material. Here too, our main result proves the existence of weak solutions to the corresponding system of partial differential equations. Its proof is based on De Giorgi's minimizing movements method, in which the system is discretized in time and, at each discrete time point, a minimization problem is solved, the associated Euler-Lagrange equations of which constitute a suitable approximation of the original equation of motion and magnetic force balance. The construction of such a minimization problem is made possible by the realization that, already on the continuous level, both of these equations can be written in terms of the same energy and dissipation potentials. The functional for the discrete minimization problem can then be constructed on the basis of these potentials.

We extend Bourgain’s bound for the order of growth of the Riemann zeta function on the critical line to Lerch zeta functions. More precisely, we prove L(λ, α, 1/2 + it) ≪ t\(^{13/84+ϵ}\) as t → ∞. For both, the Riemann zeta function as well as for the more general Lerch zeta function, it is conjectured that the right-hand side can be replaced by t\(^ϵ\) (which is the so-called Lindelöf hypothesis). The growth of an analytic function is closely related to the distribution of its zeros.

We give a collection of 16 examples which show that compositions \(g\) \(\circ\) \(f\) of well-behaved functions \(f\) and \(g\) can be badly behaved. Remarkably, in 10 of the 16 examples it suffices to take as outer function \(g\) simply a power-type or characteristic function. Such a collection of examples may serve as a source of exercises for a calculus course.