## Institut für Mathematik

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (103)
- Journal article (25)
- Book (5)
- Master Thesis (3)
- Other (3)
- Report (3)
- Conference Proceeding (2)
- Preprint (2)
- Book article / Book chapter (1)

#### Keywords

- Optimale Kontrolle (9)
- Extremwertstatistik (7)
- Newton-Verfahren (7)
- Nichtlineare Optimierung (6)
- optimal control (6)
- Mathematik (5)
- Nash-Gleichgewicht (5)
- Differentialgleichung (4)
- Extremwerttheorie (4)
- MPEC (4)

#### Institute

- Institut für Mathematik (147)
- Augenklinik und Poliklinik (2)
- Institut für Virologie und Immunbiologie (2)
- Klinik und Poliklinik für Dermatologie, Venerologie und Allergologie (2)
- Graduate School of Science and Technology (1)
- Institut für Informatik (1)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (1)
- Medizinische Klinik und Poliklinik II (1)
- Missionsärztliche Klinik (1)
- Theodor-Boveri-Institut für Biowissenschaften (1)

In the thesis at hand, several sequences of number theoretic interest will be studied in the context of uniform distribution modulo one. <br>
<br>
In the first part we deduce for positive and real \(z\not=1\) a discrepancy estimate for the sequence \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \),
where \(\gamma_a\) runs through the positive imaginary parts of the nontrivial \(a\)-points of the Riemann zeta-function. If the considered imaginary
parts are bounded by \(T\), the discrepancy of the sequence \( \left((2\pi )^{-1}(\log z)\gamma_a\right) \) tends to zero like
\( (\log\log\log T)^{-1} \) as \(T\rightarrow \infty\). The proof is related to the proof of Hlawka, who determined a discrepancy estimate for the
sequence containing the positive imaginary parts of the nontrivial zeros of the Riemann zeta-function. <br>
<br>
The second part of this thesis is about a sequence whose asymptotic behaviour is motivated by the sequence of primes. If \( \alpha\not=0\) is real
and \(f\) is a function of logarithmic growth, we specify several conditions such that the sequence \( (\alpha f(q_n)) \) is uniformly distributed
modulo one. The corresponding discrepancy estimates will be stated. The sequence \( (q_n)\) of real numbers is strictly increasing and the conditions
on its counting function \( Q(x)=\#\lbrace q_n \leq x \rbrace \) are satisfied by primes and primes in arithmetic progessions. As an application we
obtain that the sequence \( \left( (\log q_n)^K\right)\) is uniformly distributed modulo one for arbitrary \(K>1\), if the \(q_n\) are primes or primes
in arithmetic progessions. The special case that \(q_n\) equals the \(\textit{n}\)th prime number \(p_n\) was studied by Too, Goto and Kano. <br>
<br>
In the last part of this thesis we study for irrational \(\alpha\) the sequence \( (\alpha p_n)\) of irrational multiples of primes in the context of
weighted uniform distribution modulo one. A result of Vinogradov concerning exponential sums states that this sequence is uniformly distributed modulo one.
An alternative proof due to Vaaler uses L-functions. We extend this approach in the context of the Selberg class with polynomial Euler product. By doing so, we obtain
two weighted versions of Vinogradov's result: The sequence \( (\alpha p_n)\) is \( (1+\chi_{D}(p_n))\log p_n\)-uniformly distributed modulo one, where
\( \chi_D\) denotes the Legendre-Kronecker character. In the proof we use the Dedekind zeta-function of the quadratic number field \( \Bbb Q (\sqrt{D})\).
As an application we obtain in case of \(D=-1\), that \( (\alpha p_n)\) is uniformly distributed modulo one, if the considered primes are congruent to
one modulo four. Assuming additional conditions on the functions from the Selberg class we prove that the sequence \( (\alpha p_n) \) is also
\( (\sum_{j=1}^{\nu_F}{\alpha_j(p_n)})\log p_n\)-uniformly distributed modulo one, where the weights are related to the Euler product of the function.

This thesis covers a wide range of results for when a random vector is in the max-domain of attraction of max-stable random vector. It states some new theoretical results in D-norm terminology, but also gives an explaination why most approaches to multivariate extremes are equivalent to this specific approach. Then it covers new methods to deal with high-dimensional extremes, ranging from dimension reduction to exploratory methods and explaining why the Huessler-Reiss model is a powerful parametric model in multivariate extremes on par with the multivariate Gaussian distribution in multivariate regular statistics. It also gives new results for estimating and inferring the multivariate extremal dependence structure, strategies for choosing thresholds and compares the behavior of local and global threshold approaches. The methods are demonstrated in an artifical simulation study, but also on German weather data.

This dissertation investigates the application of multivariate Chebyshev polynomials in the algebraic signal processing theory for the development of FFT-like algorithms for discrete cosine transforms on weight lattices of compact Lie groups. After an introduction of the algebraic signal processing theory, a multivariate Gauss-Jacobi procedure for the development of orthogonal transforms is proven. Two theorems on fast algorithms in algebraic signal processing, one based on a decomposition property of certain polynomials and the other based on induced modules, are proven as multivariate generalizations of prior theorems. The definition of multivariate Chebyshev polynomials based on the theory of root systems is recalled. It is shown how to use these polynomials to define discrete cosine transforms on weight lattices of compact Lie groups. Furthermore it is shown how to develop FFT-like algorithms for these transforms. Then the theory of matrix-valued, multivariate Chebyshev polynomials is developed based on prior ideas. Under an existence assumption a formula for generating functions of these matrix-valued Chebyshev polynomials is deduced.

Prediction intervals are needed in many industrial applications. Frequently in mass production, small subgroups of unknown size with a lifetime behavior differing from the remainder of the population exist. A risk assessment for such a subgroup consists of two steps: i) the estimation of the subgroup size, and ii) the estimation of the lifetime behavior of this subgroup. This thesis covers both steps. An efficient practical method to estimate the size of a subgroup is presented and benchmarked against other methods. A prediction interval procedure which includes prior information in form of a Beta distribution is provided. This scheme is applied to the prediction of binomial and negative binomial counts. The effect of the population size on the prediction of the future number of failures is considered for a Weibull lifetime distribution, whose parameters are estimated from censored field data. Methods to obtain a prediction interval for the future number of failures with unknown sample size are presented. In many applications, failures are reported with a delay. The effects of such a reporting delay on the coverage properties of prediction intervals for the future number of failures are studied. The total failure probability of the two steps can be decomposed as a product probability. One-sided confidence intervals for such a product probability are presented.

A sequential quadratic Hamiltonian (SQH) scheme for solving different classes of non-smooth and non-convex PDE optimal control problems is investigated considering seven different benchmark problems with increasing difficulty. These problems include linear and nonlinear PDEs with linear and bilinear control mechanisms, non-convex and discontinuous costs of the controls, L\(^1\) tracking terms, and the case of state constraints.
The SQH method is based on the characterisation of optimality of PDE optimal control problems by the Pontryagin's maximum principle (PMP). For each problem, a theoretical discussion of the PMP optimality condition is given and results of numerical experiments are presented that demonstrate the large range of applicability of the SQH scheme.

The starting point of the thesis is the {\it universality} property of the Riemann Zeta-function $\zeta(s)$
which was proved by Voronin in 1975:
{\it Given a positive number $\varepsilon>0$ and an analytic non-vanishing function $f$ defined on a compact subset $\mathcal{K}$ of the strip $\left\{s\in\mathbb{C}:1/2 < \Re s< 1\right\}$ with connected complement, there exists a real number $\tau$ such that
\begin{align}\label{continuous}
\max\limits_{s\in \mathcal{K}}|\zeta(s+i\tau)-f(s)|<\varepsilon.
\end{align}
}
In 1980, Reich proved a discrete analogue of Voronin’s theorem, also known as {\it discrete universality theorem} for $\zeta(s)$:
{\it If $\mathcal{K}$, $f$ and $\varepsilon$ are as before, then
\begin{align}\label{discretee}
\liminf\limits_{N\to\infty}\dfrac{1}{N}\sharp\left\{1\leq n\leq N:\max\limits_{s\in \mathcal{K}}|\zeta(s+i\Delta n)-f(s)|<\varepsilon\right\}>0,
\end{align}
where $\Delta$ is an arbitrary but fixed positive number.
}
We aim at developing a theory which can be applied to prove the majority of all so far existing discrete universality theorems in the case of Dirichlet $L$-functions $L(s,\chi)$ and Hurwitz zeta-functions $\zeta(s;\alpha)$,
where $\chi$ is a Dirichlet character and $\alpha\in(0,1]$, respectively.
Both of the aforementioned classes of functions are generalizations of $\zeta(s)$, since $\zeta(s)=L(s,\chi_0)=\zeta(s;1)$, where $\chi_0$ is the principal Dirichlet character mod 1.
Amongst others, we prove statement (2) where instead of $\zeta(s)$ we have $L(s,\chi)$ for some Dirichlet character $\chi$ or $\zeta(s;\alpha)$ for some transcendental or rational number $\alpha\in(0,1]$, and instead of $(\Delta n)_{n\in\mathbb{N}}$ we can have:
\begin{enumerate}
\item \textit{Beatty sequences,}
\item \textit{sequences of ordinates of $c$-points of zeta-functions from the Selberg class,}
\item \textit{sequences which are generated by polynomials.}
\end{enumerate}
In all the preceding cases, the notion of {\it uniformly distributed sequences} plays an important role and we draw attention to it wherever we can.
Moreover, for the case of polynomials, we employ more advanced techniques from Analytic Number Theory such as bounds of exponential sums and zero-density estimates for Dirichlet $L$-functions.
This will allow us to prove the existence of discrete second moments of $L(s,\chi)$ and $\zeta(s;\alpha)$ on the left of the vertical line $1+i\mathbb{R}$, with respect to polynomials.
In the case of the Hurwitz Zeta-function $\zeta(s;\alpha)$, where $\alpha$ is transcendental or rational but not equal to $1/2$ or 1, the target function $f$ in (1) or (2), where $\zeta(\cdot)$ is replaced by $\zeta(\cdot;\alpha)$, is also allowed to have zeros.
Until recently there was no result regarding the universality of $\zeta(s;\alpha)$ in the literature whenever $\alpha$ is an algebraic irrational.
In the second half of the thesis, we prove that a weak version of statement \eqref{continuous} for $\zeta(s;\alpha)$ holds for all but finitely many algebraic irrational $\alpha$ in $[A,1]$, where $A\in(0,1]$ is an arbitrary but fixed real number.
Lastly, we prove that the ordinary Dirichlet series
$\zeta(s;f)=\sum_{n\geq1}f(n)n^{-s}$ and $\zeta_\alpha(s)=\sum_{n\geq1}\lfloor P(\alpha n+\beta)\rfloor^{-s}$
are hypertranscendental, where $f:\mathbb{N}\to\mathbb{C}$ is a {\it Besicovitch almost periodic arithmetical function}, $\alpha,\beta>0$ are such that $\lfloor\alpha+\beta\rfloor>1$ and $P\in\mathbb{Z}[X]$ is such that $P(\mathbb{N})\subseteq\mathbb{N}$.

This work deals with a class of nonlinear dynamical systems exhibiting both continuous and discrete dynamics, which is called as hybrid dynamical system.
We provide a broader framework of generalized hybrid dynamical systems allowing us to handle issues on modeling, stability and interconnections.
Various sufficient stability conditions are proposed by extensions of direct Lyapunov method.
We also explicitly show Lyapunov formulations of the nonlinear small-gain theorems for interconnected input-to-state stable hybrid dynamical systems.
Applications on modeling and stability of hybrid dynamical systems are given by effective strategies of vaccination programs to control a spread of disease in epidemic systems.

A new approach to modelling pedestrians' avoidance dynamics based on a Fokker–Planck (FP) Nash game framework is presented. In this framework, two interacting pedestrians are considered, whose motion variability is modelled through the corresponding probability density functions (PDFs) governed by FP equations. Based on these equations, a Nash differential game is formulated where the game strategies represent controls aiming at avoidance by minimizing appropriate collision cost functionals. The existence of Nash equilibria solutions is proved and characterized as a solution to an optimal control problem that is solved numerically. Results of numerical experiments are presented that successfully compare the computed Nash equilibria to the output of real experiments (conducted with humans) for four test cases.

This thesis deals with a new so-called sequential quadratic Hamiltonian (SQH) iterative scheme to solve optimal control problems with differential models and cost functionals ranging from smooth to discontinuous and non-convex. This scheme is based on the Pontryagin maximum principle (PMP) that provides necessary optimality conditions for an optimal solution. In this framework, a Hamiltonian function is defined that attains its minimum pointwise at the optimal solution of the corresponding optimal control problem. In the SQH scheme, this Hamiltonian function is augmented by a quadratic penalty term consisting of the current control function and the control function from the previous iteration. The heart of the SQH scheme is to minimize this augmented Hamiltonian function pointwise in order to determine a control update. Since the PMP does not require any differ- entiability with respect to the control argument, the SQH scheme can be used to solve optimal control problems with both smooth and non-convex or even discontinuous cost functionals. The main achievement of the thesis is the formulation of a robust and efficient SQH scheme and a framework in which the convergence analysis of the SQH scheme can be carried out. In this framework, convergence of the scheme means that the calculated solution fulfills the PMP condition. The governing differential models of the considered optimal control problems are ordinary differential equations (ODEs) and partial differential equations (PDEs). In the PDE case, elliptic and parabolic equations as well as the Fokker-Planck (FP) equation are considered. For both the ODE and the PDE cases, assumptions are formulated for which it can be proved that a solution to an optimal control problem has to fulfill the PMP. The obtained results are essential for the discussion of the convergence analysis of the SQH scheme. This analysis has two parts. The first one is the well-posedness of the scheme which means that all steps of the scheme can be carried out and provide a result in finite time. The second part part is the PMP consistency of the solution. This means that the solution of the SQH scheme fulfills the PMP conditions. In the ODE case, the following results are obtained that state well-posedness of the SQH scheme and the PMP consistency of the corresponding solution. Lemma 7 states the existence of a pointwise minimum of the augmented Hamiltonian. Lemma 11 proves the existence of a weight of the quadratic penalty term such that the minimization of the corresponding augmented Hamiltonian results in a control updated that reduces the value of the cost functional. Lemma 12 states that the SQH scheme stops if an iterate is PMP optimal. Theorem 13 proves the cost functional reducing properties of the SQH control updates. The main result is given in Theorem 14, which states the pointwise convergence of the SQH scheme towards a PMP consistent solution. In this ODE framework, the SQH method is applied to two optimal control problems. The first one is an optimal quantum control problem where it is shown that the SQH method converges much faster to an optimal solution than a globalized Newton method. The second optimal control problem is an optimal tumor treatment problem with a system of coupled highly non-linear state equations that describe the tumor growth. It is shown that the framework in which the convergence of the SQH scheme is proved is applicable for this highly non-linear case. Next, the case of PDE control problems is considered. First a general framework is discussed in which a solution to the corresponding optimal control problem fulfills the PMP conditions. In this case, many theoretical estimates are presented in Theorem 59 and Theorem 64 to prove in particular the essential boundedness of the state and adjoint variables. The steps for the convergence analysis of the SQH scheme are analogous to that of the ODE case and result in Theorem 27 that states the PMP consistency of the solution obtained with the SQH scheme. This framework is applied to different elliptic and parabolic optimal control problems, including linear and bilinear control mechanisms, as well as non-linear state equations. Moreover, the SQH method is discussed for solving a state-constrained optimal control problem in an augmented formulation. In this case, it is shown in Theorem 30 that for increasing the weight of the augmentation term, which penalizes the violation of the state constraint, the measure of this state constraint violation by the corresponding solution converges to zero. Furthermore, an optimal control problem with a non-smooth L\(^1\)-tracking term and a non-smooth state equation is investigated. For this purpose, an adjoint equation is defined and the SQH method is used to solve the corresponding optimal control problem. The final part of this thesis is devoted to a class of FP models related to specific stochastic processes. The discussion starts with a focus on random walks where also jumps are included. This framework allows a derivation of a discrete FP model corresponding to a continuous FP model with jumps and boundary conditions ranging from absorbing to totally reflecting. This discussion allows the consideration of the drift-control resulting from an anisotropic probability of the steps of the random walk. Thereafter, in the PMP framework, two drift-diffusion processes and the corresponding FP models with two different control strategies for an optimal control problem with an expectation functional are considered. In the first strategy, the controls depend on time and in the second one, the controls depend on space and time. In both cases a solution to the corresponding optimal control problem is characterized with the PMP conditions, stated in Theorem 48 and Theorem 49. The well-posedness of the SQH scheme is shown in both cases and further conditions are discussed that ensure the convergence of the SQH scheme to a PMP consistent solution. The case of a space and time dependent control strategy results in a special structure of the corresponding PMP conditions that is exploited in another solution method, the so-called direct Hamiltonian (DH) method.

A mathematical optimal-control tumor therapy framework consisting of radio- and anti-angiogenesis control strategies that are included in a tumor growth model is investigated. The governing system, resulting from the combination of two well established models, represents the differential constraint of a non-smooth optimal control problem that aims at reducing the volume of the tumor while keeping the radio- and anti-angiogenesis chemical dosage to a minimum. Existence of optimal solutions is proved and necessary conditions are formulated in terms of the Pontryagin maximum principle. Based on this principle, a so-called sequential quadratic Hamiltonian (SQH) method is discussed and benchmarked with an “interior point optimizer―a mathematical programming language” (IPOPT-AMPL) algorithm. Results of numerical experiments are presented that successfully validate the SQH solution scheme. Further, it is shown how to choose the optimisation weights in order to obtain treatment functions that successfully reduce the tumor volume to zero.