Institut für Informatik
Refine
Has Fulltext
- yes (381)
Year of publication
Document Type
- Doctoral Thesis (165)
- Journal article (147)
- Working Paper (40)
- Conference Proceeding (11)
- Report (7)
- Master Thesis (6)
- Bachelor Thesis (3)
- Book (1)
- Study Thesis (term paper) (1)
Language
- English (342)
- German (38)
- Multiple languages (1)
Keywords
- Leistungsbewertung (29)
- virtual reality (19)
- Datennetz (14)
- Quality of Experience (12)
- Netzwerk (10)
- Robotik (10)
- machine learning (9)
- Kleinsatellit (8)
- Modellierung (8)
- Simulation (8)
Institute
- Institut für Informatik (381)
- Institut Mensch - Computer - Medien (12)
- Medizinische Klinik und Poliklinik I (7)
- Graduate School of Science and Technology (6)
- Medizinische Klinik und Poliklinik II (6)
- Institut für Sportwissenschaft (5)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (3)
- Institut für Klinische Epidemiologie und Biometrie (3)
- Theodor-Boveri-Institut für Biowissenschaften (3)
- Institut für Geographie und Geologie (2)
Schriftenreihe
Sonstige beteiligte Institutionen
- Cologne Game Lab (3)
- Deutsches Zentrum für Luft- und Raumfahrt (DLR), Institut für Raumfahrtsysteme (2)
- Open University of the Netherlands (2)
- Siemens AG (2)
- Zentrum für Telematik e.V. (2)
- Airbus Defence and Space GmbH (1)
- Beuth Hochschule für Technik Berlin (1)
- Birmingham City University (1)
- California Institute of Technology (1)
- DLR (1)
In this thesis, a model of the dynamics during the landing phase of an interplanetary lander mission is developed in a 3 DOF approach with the focus lying on landing by propulsive means. Based on this model, a MATLAB simulation was developed with the goal of enabling an estimation of the performance and especially the required fuel amount of a propulsive landing system on Venus. This landing system is modeled to be able to control its descent using thrusters and to perform a stable landing at a specified target location. Using this simulation, the planetary environments of Mars and Venus can be simulated and the impact of wind, atmospheric density and gravity as well as of using different thrusters on the fuel consumption and landing abilities of the simulated landing system can be investigated. The comparability of these results with the behavior of real landing systems is validated in this thesis by simulating the Powered Descent Phase of the Mars 2020 mission and comparing the results to the data the Mars 2020 descent stage has collected during this phase of its landing. Further, based on the simulation, the minimal necessary fuel amount for a successful landing on Venus has been determined for different scenarios. The simulation along with these results are a contribution to the research of this thesis’s supervisor Clemens Riegler, M.Sc., who will use them for a comparison of different types of landing systems in the context of his doctoral thesis.
Dieser Kurzbericht beleuchtet die Einsatzmöglichkeiten von Kleinsatelliten in der extraterrestrischen Forschung und zeigt auf welche technologischen Herausforderungen sich bei ihrem Einsatz ergeben. Die präsentierten Ergebnisse sind Teil der SATEX Untersuchung (FKZ 50OO2222). In diesem Dokument werden zunächst die allgemeinen Einsatzmöglichkeiten von Kleinsatelliten in der Extraterrestrik anhand ausgewählter Beispielmissionen beleuchtet. Daraufhin erfolgt die Erörterung spezifischer technischer Herausforderungen und Umweltbedingungen bei cislunaren und interplanetaren Kleinsatellitenmissionen, gefolgt von einer kurzen Präsentation von Nutzerwünsche aus Deutschland für Missionen zur Erforschung des Weltraums. Zum Abschluss werden zehn konkrete, im Rahmen der Untersuchung ermittelte, Missionsideen vorgestellt und bewertet. Schließlich erfolgt die Zusammenfassung der wichtigsten Erkenntnisse und Empfehlungen.
Dieser Kurzbericht beleuchtet die Einsatzmöglichkeiten von Kleinsatelliten in der extraterrestrischen Forschung und zeigt auf welche technologischen Herausforderungen sich bei ihrem Einsatz ergeben. Die präsentierten Ergebnisse sind Teil der SATEX Untersuchung (FKZ 50OO2222). In diesem Dokument werden zunächst die allgemeinen Einsatzmöglichkeiten von Kleinsatelliten in der Extraterrestrik anhand ausgewählter Beispielmissionen beleuchtet. Daraufhin erfolgt die Erörterung spezifischer technischer Herausforderungen und Umweltbedingungen bei cislunaren und interplanetaren Kleinsatellitenmissionen, gefolgt von einer kurzen Präsentation von Nutzerwünsche aus Deutschland für Missionen zur Erforschung des Weltraums. Zum Abschluss werden zehn konkrete, im Rahmen der Untersuchung ermittelte, Missionsideen vorgestellt und bewertet. Schließlich erfolgt die Zusammenfassung der wichtigsten Erkenntnisse und Empfehlungen.
Here, we performed a non-systematic analysis of the strength, weaknesses, opportunities, and threats (SWOT) associated with the application of artificial intelligence to sports research, coaching and optimization of athletic performance. The strength of AI with regards to applied sports research, coaching and athletic performance involve the automation of time-consuming tasks, processing and analysis of large amounts of data, and recognition of complex patterns and relationships. However, it is also essential to be aware of the weaknesses associated with the integration of AI into this field. For instance, it is imperative that the data employed to train the AI system be both diverse and complete, in addition to as unbiased as possible with respect to factors such as the gender, level of performance, and experience of an athlete. Other challenges include e.g., limited adaptability to novel situations and the cost and other resources required. Opportunities include the possibility to monitor athletes both long-term and in real-time, the potential discovery of novel indicators of performance, and prediction of risk for future injury. Leveraging these opportunities can transform athletic development and the practice of sports science in general. Threats include over-dependence on technology, less involvement of human expertise, risks with respect to data privacy, breaching of the integrity and manipulation of data, and resistance to adopting such new technology. Understanding and addressing these SWOT factors is essential for maximizing the benefits of AI while mitigating its risks, thereby paving the way for its successful integration into sport science research, coaching, and optimization of athletic performance.
Autonomous mobile robots operating in unknown terrain have to guide
their drive decisions through local perception. Local mapping and
traversability analysis is essential for safe rover operation and low level
locomotion. This thesis deals with the challenge of building a local,
robot centric map from ultra short baseline stereo imagery for height
and traversability estimation.
Several grid-based, incremental mapping algorithms are compared and
evaluated in a multi size, multi resolution framework. A new, covariance
based mapping update is introduced, which is capable of detecting sub-
cellsize obstacles and abstracts the terrain of one cell as a first order
surface.
The presented mapping setup is capable of producing reliable ter-
rain and traversability estimates under the conditions expected for the
Cooperative Autonomous Distributed Robotic Exploreration (CADRE)
mission.
Algorithmic- and software architecture design targets high reliability
and efficiency for meeting the tight constraints implied by CADRE’s
small on-board embedded CPU.
Extensive evaluations are conducted to find possible edge-case scenar-
ios in the operating envelope of the map and to confirm performance
parameters. The research in this thesis targets the CADRE mission, but
is applicable to any form of mobile robotics which require height- and
traversability mapping.
The steadily increasing usage of smart meters generates a valuable amount of high-resolution data about the individual energy consumption and production of local energy systems. Private households install more and more photovoltaic systems, battery storage and big consumers like heat pumps. Thus, our vision is to augment these collected smart meter time series of a complete system (e.g., a city, town or complex institutions like airports) with simulatively added previously named components. We, therefore, propose a novel digital twin of such an energy system based solely on a complete set of smart meter data including additional building data. Based on the additional geospatial data, the twin is intended to represent the addition of the abovementioned components as realistically as possible. Outputs of the twin can be used as a decision support for either system operators where to strengthen the system or for individual households where and how to install photovoltaic systems and batteries. Meanwhile, the first local energy system operators had such smart meter data of almost all residential consumers for several years. We acquire those of an exemplary operator and discuss a case study presenting some features of our digital twin and highlighting the value of the combination of smart meter and geospatial data.
Background
Colorectal cancer is a leading cause of cancer-related deaths worldwide. The best method to prevent CRC is a colonoscopy. However, not all colon polyps have the risk of becoming cancerous. Therefore, polyps are classified using different classification systems. After the classification, further treatment and procedures are based on the classification of the polyp. Nevertheless, classification is not easy. Therefore, we suggest two novel automated classifications system assisting gastroenterologists in classifying polyps based on the NICE and Paris classification.
Methods
We build two classification systems. One is classifying polyps based on their shape (Paris). The other classifies polyps based on their texture and surface patterns (NICE). A two-step process for the Paris classification is introduced: First, detecting and cropping the polyp on the image, and secondly, classifying the polyp based on the cropped area with a transformer network. For the NICE classification, we design a few-shot learning algorithm based on the Deep Metric Learning approach. The algorithm creates an embedding space for polyps, which allows classification from a few examples to account for the data scarcity of NICE annotated images in our database.
Results
For the Paris classification, we achieve an accuracy of 89.35 %, surpassing all papers in the literature and establishing a new state-of-the-art and baseline accuracy for other publications on a public data set. For the NICE classification, we achieve a competitive accuracy of 81.13 % and demonstrate thereby the viability of the few-shot learning paradigm in polyp classification in data-scarce environments. Additionally, we show different ablations of the algorithms. Finally, we further elaborate on the explainability of the system by showing heat maps of the neural network explaining neural activations.
Conclusion
Overall we introduce two polyp classification systems to assist gastroenterologists. We achieve state-of-the-art performance in the Paris classification and demonstrate the viability of the few-shot learning paradigm in the NICE classification, addressing the prevalent data scarcity issues faced in medical machine learning.
Introduction: This paper addresses the need for reliable user identification in Extended Reality (XR), focusing on the scarcity of public datasets in this area.
Methods: We present a new dataset collected from 71 users who played the game “Half-Life: Alyx” on an HTC Vive Pro for 45 min across two separate sessions. The dataset includes motion and eye-tracking data, along with physiological data from a subset of 31 users. Benchmark performance is established using two state-of-the-art deep learning architectures, Convolutional Neural Networks (CNN) and Gated Recurrent Units (GRU).
Results: The best model achieved a mean accuracy of 95% for user identification within 2 min when trained on the first session and tested on the second.
Discussion: The dataset is freely available and serves as a resource for future research in XR user identification, thereby addressing a significant gap in the field. Its release aims to facilitate advancements in user identification methods and promote reproducibility in XR research.
Wireless communication networks already comprise an integral part of both the private and industrial sectors and are successfully replacing existing wired networks. They enable the development of novel applications and offer greater flexibility and efficiency. Although some efforts are already underway in the aerospace sector to deploy wireless communication networks on board spacecraft, none of these projects have yet succeeded in replacing the hard-wired state-of-the-art architecture for intra-spacecraft communication. The advantages are evident as the reduction of the wiring harness saves time, mass, and costs, and makes the whole integration process more flexible. It also allows for easier scaling when interconnecting different systems.
This dissertation deals with the design and implementation of a wireless network architecture to enhance intra-spacecraft communications by breaking with the state-of-the-art standards that have existed in the space industry for decades. The potential and benefits of this novel wireless network architecture are evaluated, an innovative design using ultra-wideband technology is presented. It is combined with a Medium Access Control (MAC) layer tailored for low-latency and deterministic networks supporting even mission-critical applications. As demonstrated by the Wireless Compose experiment on the International Space Station (ISS), this technology is not limited to communications but also enables novel positioning applications.
To adress the technological challenges, extensive studies have been carried out on electromagnetic compatibility, space radiation, and data robustness. The architecture was evaluated from various perspectives and successfully demonstrated in space.
Overall, this research highlights how a wireless network can improve and potentially replace existing state-of-the-art communication systems on board spacecraft in future missions. And it will help to adapt and ultimately accelerate the implementation of wireless networks in space systems.
Graphs provide a key means to model relationships between entities.
They consist of vertices representing the entities,
and edges representing relationships between pairs of entities.
To make people conceive the structure of a graph,
it is almost inevitable to visualize the graph.
We call such a visualization a graph drawing.
Moreover, we have a straight-line graph drawing
if each vertex is represented as a point
(or a small geometric object, e.g., a rectangle)
and each edge is represented as a line segment between its two vertices.
A polyline is a very simple straight-line graph drawing,
where the vertices form a sequence according to which the vertices are connected by edges.
An example of a polyline in practice is a GPS trajectory.
The underlying road network, in turn, can be modeled as a graph.
This book addresses problems that arise
when working with straight-line graph drawings and polylines.
In particular, we study algorithms
for recognizing certain graphs representable with line segments,
for generating straight-line graph drawings,
and for abstracting polylines.
In the first part, we first examine,
how and in which time we can decide
whether a given graph is a stick graph,
that is, whether its vertices can be represented as
vertical and horizontal line segments on a diagonal line,
which intersect if and only if there is an edge between them.
We then consider the visual complexity of graphs.
Specifically, we investigate, for certain classes of graphs,
how many line segments are necessary for any straight-line graph drawing,
and whether three (or more) different slopes of the line segments
are sufficient to draw all edges.
Last, we study the question,
how to assign (ordered) colors to the vertices of a graph
with both directed and undirected edges
such that no neighboring vertices get the same color
and colors are ascending along directed edges.
Here, the special property of the considered graph is
that the vertices can be represented as intervals
that overlap if and only if there is an edge between them.
The latter problem is motivated by an application
in automated drawing of cable plans with vertical and horizontal line segments,
which we cover in the second part.
We describe an algorithm that
gets the abstract description of a cable plan as input,
and generates a drawing that takes into account
the special properties of these cable plans,
like plugs and groups of wires.
We then experimentally evaluate the quality of the resulting drawings.
In the third part, we study the problem of abstracting (or simplifying)
a single polyline and a bundle of polylines.
In this problem, the objective is to remove as many vertices as possible from the given polyline(s)
while keeping each resulting polyline sufficiently similar to its original course
(according to a given similarity measure).