## Institut für Theoretische Physik und Astrophysik

### Refine

#### Has Fulltext

- yes (260)

#### Is part of the Bibliography

- yes (260)

#### Year of publication

#### Document Type

- Doctoral Thesis (145)
- Journal article (113)
- Master Thesis (1)
- Other (1)

#### Keywords

- Monte-Carlo-Simulation (12)
- Supersymmetrie (12)
- Topologischer Isolator (12)
- topological insulators (12)
- Blazar (10)
- LHC (9)
- AdS-CFT-Korrespondenz (8)
- Aktiver galaktischer Kern (8)
- Astrophysik (8)
- Elementarteilchenphysik (8)

#### Institute

#### Sonstige beteiligte Institutionen

Electron–phonon scatterings in solid-state systems are pivotal processes in determining many key physical quantities such as charge carrier mobilities and thermal conductivities. Here, we report direct probing of phonon mode specific electron–phonon scatterings in layered semiconducting transition metal dichalcogenides WSe2, MoSe2, WS2, and MoS2 through inelastic electron tunneling spectroscopy measurements, quantum transport simulations, and density functional calculation. We experimentally and theoretically characterize momentum-conserving single- and two-phonon electron–phonon scatterings involving up to as many as eight individual phonon modes in mono- and bilayer films, among which transverse, longitudinal acoustic and optical, and flexural optical phonons play significant roles in quantum charge flows. Moreover, the layer-number sensitive higher-order inelastic electron–phonon scatterings, which are confirmed to be generic in all four semiconducting layers, can be attributed to differing electronic structures, symmetry, and quantum interference effects during the scattering processes in the ultrathin semiconducting films.

In this thesis I explore the interplay of geometry and quantum information theory via the holographic principle, with a specific focus on geometric phases in quantum systems like two interacting qubits, and how they relate to entanglement measures and Hilbert space factorisation. I establish geometric phases as an indicator for Hilbert space factorsiation, both in an abstract sense using von Neumann operator algebras as well as applied to the eternal black hole within the AdS/CFT correspondence. For the latter case I show that geometric phases allow to diagnose non-factorisation from a boundary point of view. I also introduce geometric quantum discord as a second geometric measure for non-factorisation and reveals its potential implications for the study of black hole microstates.

The anomalies in the B-meson sector, in particular R-K(*) and R-D(*), are often interpreted as hints for physics beyond the Standard Model. To this end, leptoquarks or a heavy Z' represent the most popular SM extensions which can explain the observations. However, adding these fields by hand is not very satisfactory as it does not address the big questions like a possible embedding into a unified gauge theory. On the other hand, light leptoquarks within a unified framework are challenging due to additional constraints such as lepton flavor violation. The existing accounts typically deal with this issue by providing estimates on the relevant couplings. In this letter we consider a complete model based on the SU(4)(C) circle times SU(2)(L) circle times U(1) R gauge symmetry, a subgroup of SO(10), featuring both scalar and vector leptoquarks. We demonstrate that this setup has, in principle, all the potential to accommodate R-K(*) and R-D(*) while respecting bounds from other sectors usually checked in this context. However, it turns out that K-L -> e(+/-)mu(-/+) severely constraints not only the vector but also the scalar leptoquarks and, consequently, also the room for any sizeable deviations of R-K(*) from 1. We briefly comment on the options for extending the model in order to conform this constraint. Moreover, we present a simple criterion for all-orders proton stability within this class of models.

Proximitized materials
(2019)

Advances in scaling down heterostructures and having an improved interface quality together with atomically thin two-dimensional materials suggest a novel approach to systematically design materials. A given material can be transformed through proximity effects whereby it acquires properties of its neighbors, for example, becoming superconducting, magnetic, topologically nontrivial, or with an enhanced spin–orbit coupling. Such proximity effects not only complement the conventional methods of designing materials by doping or functionalization but also can overcome their various limitations. In proximitized materials, it is possible to realize properties that are not present in any constituent region of the considered heterostructure. While the focus is on magnetic and spin–orbit proximity effects with their applications in spintronics, the outlined principles also provide a broader framework for employing other proximity effects to tailor materials and realize novel phenomena.

This thesis is dedicated to construct a non-abelian holographic dynamical minimal composite Higgs model. We first build a non-abelian bottom-up AdS/YM model that can explain the QCD meson spectrum well. The model is made non-abelian by considering non-abelian DBI action in the top-down model. We then change the dual theory from the QCD to the minimal composite Higgs model U (4)/Sp(4). By adding a second explicit U (4) → Sp(4) breaking through the NJL interaction at the boundary, we managed to construct a composite Higgs phase and a technicolor phase in this model. The transition between the two phases is also realized, which is controlled by the NJL coupling. This thesis is based on the works [1, 2].

The present thesis is concerned with the automated computation of integrated and differential
cross sections of diboson production in proton–proton and electron–positron collisions at very
high energies, including a resummation of electroweak Sudakov logarithms to all orders in the
fine-structure constant using soft–collinear effective theory.
The search for new physics at future colliders such as the FCC–hh or the CLIC requires
precise predictions for scattering cross sections from the theoretical high-energy physics com-
munity. Electroweak Sudakov logarithms, which currently limit the accuracy of predictions in
the high-energy tails of differential distributions for LHC-like energies, are known to destroy the
convergence behaviour of the fixed-order perturbative series, once sufficiently high energies are
considered.
To resum these large corrections, soft–collinear effective theory has been applied to simple
processes, which permits analytic calculations. Within this work, we present an automated
computation within a Monte Carlo integration framework, thus facilitating the computation of
fully differential cross section to complicated processes. This requires the use of the Catani–
Seymour subtraction algorithm to treat the occurring infrared divergences. The machinery is
applied to all diboson processes with intermediate weak gauge bosons, including the photon-
induced W+ W− -production channel.
To this end we carefully study the validity of the necessary assumptions such as the double-
pole approximation and estimate the order of magnitude of neglected effects. Especially the
non-doubly-resonant contributions turn out to be sizeable in several interesting phase-space
regions.
For lepton collisions at 3 TeV we obtain the integrated cross sections of W-pair and Z-pair
production to be shifted by more than 20% with respect to the Born value, owing to the resum-
mation of the leading-logarithmic corrections These effects are partly cancelled by subleading
effects. For proton–proton collisions at √
s = 100 TeV we observe sizeable resummation effects
in the high-energy tails, while the integrated cross sections are dominated by interactions, for
which soft–collinear effective theory is not applicable.

In this thesis we examine the vector boson scattering (VBS) process \(\mathrm p \mathrm p \to \mathrm e^+ \nu_\mathrm e\mu^-\bar\nu_\mu\mathrm j\mathrm j +X\) (short: \(\mathrm W^+\mathrm W^-\) scattering) at NLO accuracy in two experimental setups by performing a Monte Carlo analysis of a \(13\,\mathrm{TeV}\) LHC run. \(\mathrm W^+\mathrm W^-\) scattering shows similarities and differences compared to the scattering of other vector bosons. We present a detailed description of the types of appearing subprocesses and background processes. We give insight into our code which solves the problems we are faced within \(\mathrm W^+\mathrm W^-\) scattering. This is especially the presence of the Higgs-boson resonance in the fiducial phase-space region. Particular attention is dedicated to the permutation of resonances. The integrated signal cross section at LO \(\mathcal O(\alpha^6)\) amounts to \(2.6988(3)\,\mathrm{fb}\) and \(1.5322(2)\,\mathrm{fb}\), respectively, in the two experimental setups. The LO QCD-induced background of \(\mathcal O(\alpha_\mathrm s^2\alpha^4)\) amounts to \(6.9115(9)\,\mathrm{fb}\) and \(1.6923(3)\,\mathrm{fb}\). The EW corrections to the signal are \(-11.4\%\) and \(-6.7\%\), the QCD corrections amount to \(-5.2\%\) and \(-23.0\%\). The EW corrections to the background are \(-8.3\%\) and \(-5.3\%\), the QCD corrections amount to \(-30.3\%\) and \(-77.6\%\). Our results for the QCD corrections and the QCD-induced background include a large uncertainty from varying the renormalisation and factorisation scale, and we discuss improvements for future calculations. We show the differential cross sections with unique features of \(\mathrm W^+\mathrm W^-\) scattering compared to other VBS processes and investigate in particular the subprocess of Higgs-boson production by using a modified version of our setups.

Superconductivity from the condensation of topological defects in a quantum spin-Hall insulator
(2019)

The discovery of quantum spin-Hall (QSH) insulators has brought topology to the forefront of condensed matter physics. While a QSH state from spin-orbit coupling can be fully understood in terms of band theory, fascinating many-body effects are expected if it instead results from spontaneous symmetry breaking. Here, we introduce a model of interacting Dirac fermions where a QSH state is dynamically generated. Our tuning parameter further allows us to destabilize the QSH state in favour of a superconducting state through proliferation of charge-2e topological defects. This route to superconductivity put forward by Grover and Senthil is an instance of a deconfined quantum critical point (DQCP). Our model offers the possibility to study DQCPs without a second length scale associated with the reduced symmetry between field theory and lattice realization and, by construction, is amenable to large-scale fermion quantum Monte Carlo simulations.

Topolectrical Circuits
(2018)

Invented by Alessandro Volta and Félix Savary in the early 19th century, circuits consisting of resistor, inductor and capacitor (RLC) components are omnipresent in modern technology. The behavior of an RLC circuit is governed by its circuit Laplacian, which is analogous to the Hamiltonian describing the energetics of a physical system. Here we show that topological insulating and semimetallic states can be realized in a periodic RLC circuit. Topological boundary resonances (TBRs) appear in the impedance read-out of a topolectrical circuit, providing a robust signal for the presence of topological admittance bands. For experimental illustration, we build the Su-Schrieffer–Heeger circuit, where our impedance measurement detects the TBR midgap state. Topolectrical circuits establish a bridge between electrical engineering and topological states of matter, where the accessibility, scalability, and operability of electronics synergizes with the intricate boundary properties of topological phases.

The quantum mechanical screening of a spin via conduction electrons depends sensitively on the environment seen by the magnetic impurity. A high degree of responsiveness can be obtained with metal complexes, as the embedding of a metal ion into an organic molecule prevents intercalation or alloying and allows for a good control by an appropriate choice of the ligands. There are therefore hopes to reach an “on demand” control of the spin state of single molecules adsorbed on substrates. Hitherto one route was to rely on “switchable” molecules with intrinsic bistabilities triggered by external stimuli, such as temperature or light, or on the controlled dosing of chemicals to form reversible bonds. However, these methods constrain the functionality to switchable molecules or depend on access to atoms or molecules. Here, we present a way to induce bistability also in a planar molecule by making use of the environment. We found that the particular “habitat” offered by an antiphase boundary of the Rashba system BiAg2 stabilizes a second structure for manganese phthalocyanine molecules, in which the central Mn ion moves out of the molecular plane. This corresponds to the formation of a large magnetic moment and a concomitant change of the ground state with respect to the conventional adsorption site. The reversible spin switch found here shows how we can not only rearrange electronic levels or lift orbital degeneracies via the substrate, but even sway the effects of many-body interactions in single molecules by acting on their surrounding.