• Deutsch
  • Home
  • Search
  • Browse
  • Publish
  • Help
Schließen
  • Faculties
  • Graduate Schools

Graduate School of Life Sciences

Refine

Has Fulltext

  • yes (809)

Is part of the Bibliography

  • yes (809)

Year of publication

  • 2023 (6)
  • 2022 (102)
  • 2021 (124)
  • 2020 (85)
  • 2019 (69)
  • 2018 (81)
  • 2017 (35)
  • 2016 (40)
  • 2015 (45)
  • 2014 (61)
+ more

Document Type

  • Doctoral Thesis (803)
  • Journal article (5)
  • Book (1)

Language

  • English (625)
  • German (183)
  • Multiple languages (1)

Keywords

  • Maus (31)
  • T-Lymphozyt (26)
  • Thrombozyt (25)
  • Taufliege (20)
  • Dendritische Zelle (18)
  • Tissue Engineering (17)
  • Genexpression (16)
  • Angst (15)
  • Myc (14)
  • Signaltransduktion (14)
+ more

Author

  • Beilhack, Andreas (3)
  • Brede, Christian (2)
  • Einsele, Hermann (2)
  • Halder, Partho (2)
  • Hoffmann, Helene (2)
  • Karl, Franziska (2)
  • Mokhtari, Zeinab (2)
  • Upcin, Berin (2)
  • AL-Hijailan, Reem Saud (1)
  • Abdelmohsen, Usama Ramadan (1)
+ more

Institute

  • Graduate School of Life Sciences (809)
  • Theodor-Boveri-Institut für Biowissenschaften (74)
  • Rudolf-Virchow-Zentrum (57)
  • Institut für Pharmakologie und Toxikologie (37)
  • Institut für Virologie und Immunbiologie (32)
  • Institut für Molekulare Infektionsbiologie (30)
  • Medizinische Fakultät (29)
  • Institut für Psychologie (28)
  • Julius-von-Sachs-Institut für Biowissenschaften (21)
  • Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (20)
+ more

Sonstige beteiligte Institutionen

  • Helmholtz Institute for RNA-based Infection Research (HIRI) (2)
  • Universitätsklinikum Münster (2)
  • Zentrum für Infektionsforschung (ZINF) Würzburg (2)
  • Bio-Imaging Center Würzburg (1)
  • Biomedical Center Munich, Department of Physiological Chemistry, Ludwig-Maximilians-Universität München (1)
  • CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - the development agency of the Brazilian Federal Government (1)
  • CBIO, University of Cape Town, South Africa (1)
  • Carl-Ludwig-Institut für Physiologie, Universität Leipzig (1)
  • DAAD - Deutscher Akademischer Austauschdienst (1)
  • Department of Biochemistry (1)
+ more

809 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
Function of Peripheral Blood Eosinophils in Melanoma (2023)
Wendlinger, Simone Alice
Despite accounting for only a small proportion of all skin cancers, malignant melanoma displays a serious health risk with increasing incidence and high mortality rate. Fortunately, advances in the treatment of malignant melanoma now prolong survival and enhance response and treatment efficacy. Established biomarkers help evaluate disease progression and facilitate choosing appropriate and individual treatment options. However, the need for easily accessible and reliable biomarkers is rising to predict patient-specific clinical outcome. Eosinophil infiltration into the tumor and high peripheral eosinophil counts prior and during treatment have been associated with better response in patients for various cancer entities, including melanoma. An analysis of a heterogeneous study cohort reported high serum ECP levels in non-responders. Hence, eosinophil frequency and serum ECP as a soluble eosinophil-secreted mediator were suggested as prognostic biomarkers in melanoma. We examined whether melanoma patients treated with first-line targeted therapy could also benefit from the effects of eosinophils. In total, 243 blood and serum samples from patients with advanced melanoma were prospectively and retrospectively collected before and after drug initiation. To link eosinophil function to improved clinical outcome, soluble serum markers and peripheral blood counts were used for correlative studies using a homogeneous study cohort. In addition, functional and phenotypical characterizations provided insights into the expression profile and activity of freshly isolated eosinophils, including comparisons between patients and healthy donors. Our data showed a significant correlation between high pre-treatment blood eosinophil counts and improved response to targeted therapy and by trend to combinatorial immunotherapy in patients with metastatic melanoma. In accordance with previous studies our results links eosinophil blood counts to better response in melanoma patients. High pre-treatment ECP serum concentration correlated with response to immunotherapy but not to targeted therapy. Eosinophils from healthy donors and patients showed functional and phenotypical similarities. Functional assays revealed a strong cytotoxic potential of blood eosinophils towards melanoma cells in vitro, inducing apoptosis and necrosis. In addition, in vitro cytotoxicity was an active process of peripheral eosinophils and melanoma cells with bidirectional features and required close cell-cell interaction. The extent of cytotoxicity was dose-dependent and showed susceptibility to changes in physical factors like adherence. Importantly, we provide evidence of an additive tumoricidal function of eosinophils and combinatorial targeted therapy in vitro. In summary, we give valuable insights into the complex and treatment-dependent role of eosinophils in melanoma. As a result, our data support the suggestion of eosinophils and their secreted mediators as potential prognostic biomarkers. It will take additional studies to examine the molecular mechanisms that underlie our findings.
Mapping membrane receptor distribution on resting platelets combining Expansion Microscopy and fluorescence confocal microscopy (2023)
Maier, Sophia Edith
Stroke and myocardial infarction are the most prominent and severe consequences of pathological thrombus formation. For prevention and/or treatment of thrombotic events there is a variety of anti-coagulation and antiplatelet medication that all have one side effect in common: the increased risk of bleeding. To design drugs that only intervene in the unwanted aggregation process but do not disturb general hemostasis, it is crucial to decipher the exact clotting pathway which has not been fully understood yet. Platelet membrane receptors play a vital role in the clotting pathway and, thus, the aim of this work is to establish a method to elucidate the interactions, clustering, and reorganization of involved membrane receptors such as GPIIb/IIIa and GPIX as part of the GPIb-IX-V complex. The special challenges regarding visualizing membrane receptor interactions on blood platelets are the high abundancy of the first and the small size of the latter (1—3µm of diameter). The resolution limit of conventional fluorescence microscopy and even super-resolution approaches prevents the successful differentiation of densely packed receptors from one another. Here, this issue is approached with the combination of a recently developed technique called Expansion Microscopy (ExM). The image resolution of a conventional fluorescence microscope is enhanced by simply enlarging the sample physically and thus pulling the receptors apart from each other. This method requires a complex sample preparation and holds lots of obstacles such as variable or anisotropic expansion and low images contrast. To increase ExM accuracy and sensitivity for interrogating blood platelets, it needs optimized sample preparation as well as image analysis pipelines which are the main part of this thesis. The colocalization results show that either fourfold or tenfold expanded, resting platelets allow a clear distinction between dependent, clustered, and independent receptor organizations compared to unexpanded platelets.Combining dual-color Expansion and confocal fluorescence microscopy enables to image in the nanometer range identifying GPIIb/IIIa clustering in resting platelets – a pattern that may play a key role in the clotting pathway
Plastin 3 rescues defective cell surface translocation and activation of TrkB in mouse models for spinal muscular atrophy (2023)
Hennlein, Luisa
Spinal muscular atrophy (SMA) is a genetic pediatric condition that affects lower motoneurons leading to their degeneration and muscle weakness. It is caused by homozygous loss or mutations in the Survival Motor Neuron 1 (SMN1) gene; however, the pathomechanism leading to motoneuron degeneration is not fully resolved. Cultured embryonic SMA motoneurons display axon elongation and differentiation defects accompanied by collapsed growth cones with a disturbed actin cytoskeleton. Intriguingly, motoneurons cultured from mice deficient for the Tropomyosin-kinase receptor B (TrkB), exhibit similar pathological features. Thus, the question arises whether SMA motoneurons suffer from defective Brain-derived neurotrophic factor (BDNF)/TrkB signaling and whether there is a link to the disturbed actin cytoskeleton. In the recent years, modifier genes such as Plastin 3 (PLS3) were shown to beneficially interfere with SMA pathology. Nevertheless, the mechanism of how the actin-bundler PLS3 counteracts SMN deficiency is not well understood. In this study, we investigated TrkB localization and its activation in cultured SMA motoneurons and neuromuscular junctions (NMJs). While TrkB levels are only mildly affected locally in axon terminals, BDNF-mediated TrkB phosphorylation was massively disturbed. The activity-dependent TrkB translocation to the cell surface and its activation via BDNF were shown to be Pls3-dependent processes, that can be abolished by knockdown of Pls3. In contrast, PLS3 overexpression in SMA motoneurons rescued the defects on morphological and functional level. In particular, the relocation of TrkB to the cell surface after BDNF-induced internalization is disturbed in SMA, which is based on an actin-dependent TrkB translocation defect from intracellular stores. Lastly, AAV9-mediated PLS3 overexpression in vivo in neonatal SMA mice provided further evidence for the capacity of PLS3 to modulate actin dynamics necessary for accurate BDNF/TrkB signaling. In conclusion, we provide a novel role for PLS3 in mediating proper alignment of transmembrane proteins as prerequisite for their appropriate functioning. Hence, PLS3 is required for a key process indispensable for the development and function of motoneurons even beyond the context of SMA.
Improving acute pain management with emotion regulation strategies: A comparison of acceptance, distraction, and reappraisal (2023)
Haspert, Valentina
Pain conditions and chronic pain disorders are among the leading reasons for seeking medical help and immensely burden patients and the healthcare system. Therefore, research on the underlying mechanisms of pain processing and modulation is necessary and warranted. One crucial part of this pain research includes identifying resilience factors that protect from chronic pain development and enhance its treatment. The ability to use emotion regulation strategies has been suggested to serve as a resilience factor, facilitating pain regulation and management. Acceptance has been discussed as a promising pain regulation strategy, but results in this domain have been mixed so far. Moreover, the allocation of acceptance in Gross’s (1998) process model of emotion regulation has been under debate. Thus, comparing acceptance with the already established strategies of distraction and reappraisal could provide insights into underlying mechanisms. This dissertation project consisted of three successive experimental studies which aimed to investigate these strategies by applying different modalities of individually adjusted pain stimuli of varying durations. In the first study (N = 29), we introduced a within-subjects design where participants were asked to either accept (acceptance condition) or react to the short heat pain stimuli (10 s) without using any pain regulation strategies (control condition). In the second study (N = 36), we extended the design of study 1 by additionally applying brief, electrical pain stimuli (20 ms) and including the new experimental condition distraction, where participants should distract themselves from the pain experience by imagining a neutral situation. In the third study (N = 121), all three strategies, acceptance, distraction, and reappraisal were compared with each other and additionally with a neutral control condition in a mixed design. Participants were randomly assigned to one of three strategy groups, including a control condition and a strategy condition. All participants received short heat pain stimuli of 10 s, alternating with tonic heat pain stimuli of 3 minutes. In the reappraisal condition, participants were instructed to imagine the pain having a positive outcome or valence. The self-reported pain intensity, unpleasantness, and regulation ratings were measured in all studies. We further recorded the autonomic measures heart rate and skin conductance continuously and assessed the habitual emotion regulation styles and pain-related trait factors via questionnaires. Results revealed that the strategies acceptance, distraction, and reappraisal significantly reduced the self-reported electrical and heat pain stimulation with both durations compared to a neutral control condition. Additionally, regulatory efforts with acceptance in study 2 and with all strategies in study 3 were reflected by a decreased skin conductance level compared to the control condition. However, there were no significant differences between the strategies for any of the assessed variables. These findings implicate similar mechanisms underlying all three strategies, which led to the proposition of an extended process model of emotion regulation. We identified another sequence in the emotion-generative process and suggest that acceptance can flexibly affect at least four sequences in the process. Correlation analyses further indicated that the emotion regulation style did not affect regulatory success, suggesting that pain regulation strategies can be learned effectively irrespective of habitual tendencies. Moreover, we found indications that trait factors such as optimism and resilience facilitated pain regulation, especially with acceptance. Conclusively, we propose that acceptance could be flexibly used by adapting to different circumstances. The habitual use of acceptance could therefore be considered a resilience factor. Thus, acceptance appears to be a promising and versatile strategy to prevent the development of and improve the treatment of various chronic pain disorders. Future studies should further examine factors and circumstances that support effective pain regulation with acceptance.
Correlation of FluidFM® Technology and Fluorescence Microscopy for the Visualization of Cellular Detachment Steps (2023)
Weigl, Franziska
This thesis aimed the development of a correlated device which combines FluidFM® with Fluorescence Microscopy (FL) (FL-FluidFM®) and enables the simultaneous quantification of adhesion forces and fluorescent visualization of mature cells. The implementation of a PIFOC was crucial to achieve a high-resolution as well as a stable but dynamic focus level. The functionality of SCFS after hardware modification was verified by comparing two force-curves, both showing the typical force progression and measured with the optimized and conventional hardware, respectively. Then, the integration of FL was examined by detaching fluorescently labeled REF52 cells. The fluorescence illumination of the cytoskeleton showed the expected characteristic force profile and no evidence of interference effects. Afterwards a corresponding correlative data analysis was addressed including manual force step fitting, the identification of visualized cellular unbinding, and a time-dependent correlation. This procedure revealed a link between the area of cytoskeletal unbinding and force-jumps. This was followed by a comparison of the detachment characteristics of intercellular connected HUVECs and individual REF52 cells. HUVECs showed maximum detachment forces in the same order of magnitude as the ones of single REF52 cells. This contrasted with the expected strong cohesiveness of endothelial cells and indicated a lack of cell-cell contact formation. The latter was confirmed by a comparison of HUVECs, primary HBMVECs, and immortalized EA.hy926 cells fluorescently labeled for two marker proteins of intercellular junctions. This unveiled that both the previous cultivation duration and the cell type have a major impact on the development of intercellular junctions. In summary, the correlative FL FluidFM® represents a powerful novel approach, which enables a truly contemporaneous performance and, thus, has the potential to reveal new insights into the mechanobiological properties of cell adhesion.
Hyaluronic acid based Bioinks for Biofabrication of Mesenchymal Stem Cells (2023)
Forster, Leonard
As a major component of the articular cartilage extracellular matrix, hyaluronic acid is a widely used biomaterial in regenerative medicine and tissue engineering. According to its well-known interaction with multiple chondrocyte surface receptors which positively affects many cellular pathways, some approaches by combining mesenchymal stem cells and hyaluronic acid-based hydrogels are already driven in the field of cartilage regeneration and fat tissue. Nevertheless, a still remaining major problem is the development of the ideal matrix for this purpose. To generate a hydrogel for the use as a matrix, hyaluronic acid must be chemically modified, either derivatized or crosslinked and the resulting hydrogel is mostly shaped by the mold it is casted in whereas the stem cells are embedded during or after the gelation procedure which does not allow for the generation of zonal hierarchies, cell density or material gradients. This thesis focuses on the synthesis of different hyaluronic acid derivatives and poly(ethylene glycol) crosslinkers and the development of different hydrogel and bioink compositions that allow for adjustment of the printability, integration of growth factors, but also for the material and biological hydrogel, respectively bioink properties.
Entwicklung und präklinische Evaluation immunologischer und nuklearmedizinischer diagnostischer Tests für Schimmelpilz-assoziierte Hypersensitivität und invasive Mykosen (2022)
Page, Lukas
Schimmelpilze können in Abhängigkeit des Immunstatus und der Vorerkrankungen betroffener Patienten unterschiedliche Krankheitsbilder wie Hypersensitivitäts-erkrankungen oder lebensbedrohliche invasive Infektionen hervorrufen. Da die Diagnosestellung dieser Erkrankungen mitunter komplex und insensitiv ist, sollten im Rahmen dieser Arbeit unterschiedliche Ansätze neuer diagnostischer Assays untersucht werden. In den letzten Jahren wurden Assays entwickelt, die auf Basis durchflusszytometrisch quantifizierter Pilz-spezifischer T-Zellen aus peripherem Blut einen supportiven Biomarker zur Diagnostik invasiver Mykosen liefern könnten. Da die hierfür isolierten T-Zellen anfällig gegenüber präanalytischer Lagerzeiten und immunsuppressiver Medikation sind, wurden hier Protokolloptimierungen vorgenommen, um anhand eines Vollblut-basierten Assays mit zusätzlicher CD49d-Kostimulation diesen Limitationen entgegen zu wirken. In einer Studie an gesunden Probanden konnte dabei gezeigt werden, dass die Kombination der Durchflusszytometrie mit ausgewählten Zytokin-Messungen (IL-5, IL-10 und IL-17) zu einer verbesserten Erkennung vermehrt Schimmelpilz-exponierter Personen beitragen könnte. Neben Infektionen könnten dabei im umwelt- und arbeitsmedizinischen Kontext Polarisationen der T-Zell-Populationen detektiert werden, welche mit Sensibilisierungen und Hypersensitivität assoziiert werden. Zusätzlich wurde ein in vitro Transwell® Alveolarmodell zur Simulation pulmonaler Pilzinfektionen für Erreger der Ordnung Mucorales adaptiert, durch Reproduktion wichtiger Merkmale der Pathogenese von Mucormykosen validiert, und für Untersuchungen der Immunpathologie und Erreger-Invasion verwendet. Das Modell wurde anschließend zur in vitro Evaluation von radioaktiv markiertem Amphotericin B mit 99mTc oder 68Ga als nuklearmedizinischen Tracer verwendet. Die untersuchten Schimmelpilze zeigten dabei eine zeit- und dosis-abhängige Aufnahme der Tracer, während bakteriell infizierte Proben nicht detektiert wurden. Die erhobenen Daten dokumentieren ein vielversprechendes Potenzial von Amphotericin B-basierten Tracer, das in zukünftigen in vivo Studien weiter evaluiert werden sollte.
Mechanistic studies of protein-DNA interactions by single molecule atomic force microscopy (2022)
Bangalore, Disha Mohan
Protein-DNA interactions are central to many biological processes and form the bedrock of gene transcription, DNA replication, and DNA repair processes. Many proteins recognize specific sequences in DNA- a restriction enzyme must only cut at the correct sequence and a transcription factor should bind at its consensus sequence. Some proteins are designed to bind to specific structural or chemical features in DNA, such as DNA repair proteins and some DNA modifying enzymes. Target-specific DNA binding proteins initially bind to non-specific DNA and then search for their target sites through different types of diffusion mechanisms. Atomic force microscopy (AFM) is a single-molecule technique that is specifically well-suited to resolve the distinct states of target-specific as well as nonspecific protein-DNA interactions that are vital for a deeper insight into the target site search mechanisms of these enzymes. In this thesis, protein systems involved in epigenetic regulation, base excision repair (BER), and transcription are investigated by single-molecule AFM analyses complemented by biochemical and biophysical experiments. The first chapter of this thesis narrates the establishment of a novel, user-unbiased MatLab-based tool for automated DNA bend angle measurements on AFM data. This tool has then been employed to study the initial lesion detection step of several DNA glycosylases. These results promoted a model describing the altered plasticities of DNA at the target lesions of DNA glycosylases as the fundamental mechanism for their enhanced efficiency of lesion detection. In the second chapter of this thesis, the novel automated tool has been further extended to provide protein binding positions on the DNA along with corresponding DNA bend angles and applied to the study of DNMT3A DNA methyltransferase. These AFM studies revealed preferential co-methylation at specific, defined distances between two CpG sites by the enzyme and when combined with biochemical analyses and structural modelling supported novel modes of CpG co-methylation by DNMT3A. In the third chapter of this thesis, the role of 8-oxo-guanine glycosylase (hOGG1) in Myc-mediated transcription initiation has been investigated. AFM analyses revealed that in the presence of oxidative damage in DNA, Myc is recruited to its target site (E-box) by hOGG1 through direct protein-protein interactions, specifically under oxidizing conditions. Intriguingly, oxidation of hOGG1 was further observed to result in dimerization of hOGG1, which may also play a role in the mechanism of transcription regulation by hOGG1 under oxidative stress.
Multilevel analysis of the human immune response to \(Aspergillus\) \(fumigatus\) infection: Characteristic molecular signatures and individual risk factors (2022)
Zoran, Tamara
Although the field of fungal infections advanced tremendously, diagnosis of invasive pulmonary aspergillosis (IPA) in immunocompromised patients continues to be a challenge. Since IPA is a multifactorial disease, investigation from different aspects may provide new insights, helpful for improving IPA diagnosis. This work aimed to characterize the human immune response to Aspergillus fumigatus in a multilevel manner to identify characteristic molecular candidates and risk factors indicating IPA, which may in the future support already established diagnostic assays. We combined in vitro studies using myeloid cells infected with A. fumigatus and longitudinal case-control studies investigating patients post allogeneic stem cell transplantation (alloSCT) suffering from IPA and their match controls. Characteristic miRNA and mRNA signatures indicating A. fumigatus-infected monocyte-derived dendritic cells (moDCs) demonstrated the potential to differentiate between A. fumigatus and Escherichia coli infection. Transcriptome and protein profiling of alloSCT patients suffering from IPA and their matched controls revealed a distinctive IPA signature consisting of MMP1 induction and LGAL2 repression in combination with elevated IL-8 and caspase-3 levels. Both, in vitro and case-control studies, suggested cytokines, matrix-metallopeptidases and galectins are important in the immune response to A. fumigatus. Identified IPA characteristic molecular candidates are involved in numerous processes, thus a combination of these in a distinctive signature may increase the specificity. Finally, low monocyte counts, severe GvHD of the gut (grade ≥ 2) and etanercept administration were significantly associated with IPA diagnosis post alloSCT. Etanercept in monocyte-derived macrophages (MDM) infected with A. fumigatus downregulates genes involved in the NF-κB and TNF-α pathway and affects the secretion of CXCL10. Taken together, identified characteristic molecular signatures and risk factors indicating IPA may in the future in combination with established fungal biomarkers overcome current diagnostic challenges and help to establish tailored antifungal therapy. Therefore, further multicentre studies are encouraged to evaluate reported findings.
Supraspinal Locomotor Network Derangements: A Multimodal Approach (2022)
Palmisano, Chiara
Parkinson’s Disease (PD) constitutes a major healthcare burden in Europe. Accounting for aging alone, ~700,000 PD cases are predicted by 2040. This represents an approximately 56% increase in the PD population between 2005 and 2040, with a consequent rise in annual disease‐related medical costs. Gait and balance disorders are a major problem for patients with PD and their caregivers, mainly because to their correlation with falls. Falls occur as a result of a complex interaction of risk factors. Among them, Freezing of Gait (FoG) is a peculiar gait derangement characterized by a sudden and episodic inability to produce effective stepping, causing falls, mobility restrictions, poor quality of life, and increased morbidity and mortality. Between 50–70% of PD patients have FoG and/or falls after a disease duration of 10 years, only partially and inconsistently improved by dopaminergic treatment and Deep Brain Stimulation (DBS). Treatment-induced worsening has been also observed under certain conditions. Effective treatments for gait disturbances in PD are lacking, probably because of the still poor understanding of the supraspinal locomotor network. In my thesis, I wanted to expand our knowledge of the supraspinal locomotor network and in particular the contribution of the basal ganglia to the control of locomotion. I believe this is a key step towards new preventive and personalized therapies for postural and gait problems in patients with PD and related disorders. In addition to patients with PD, my studies also included people affected by Progressive Supranuclear Palsy (PSP). PSP is a rare primary progressive parkinsonism characterized at a very early disease stage by poor balance control and frequent backwards falls, thus providing an in vivo model of dysfunctional locomotor control. I focused my attention on one of the most common motor transitions in daily living, the initiation of gait (GI). GI is an interesting motor task and a relevant paradigm to address balance and gait impairments in patients with movement disorders, as it is associated with FoG and high risk of falls. It combines a preparatory (i.e., the Anticipatory Postural Adjustments [APA]) and execution phase (the stepping) and allows the study of movement scaling and timing as an expression of muscular synergies, which follow precise and online feedback information processing and integration into established feedforward patterns of motor control. By applying a multimodal approach that combines biomechanical assessments and neuroimaging investigations, my work unveiled the fundamental contribution of striatal dopamine to GI in patients with PD. Results in patients with PSP further supported the fundamental role of the striatum in GI execution, revealing correlations between the metabolic intake of the left caudate nucleus with diverse GI measurements. This study also unveiled the interplay of additional brain areas in the motor control of GI, namely the Thalamus, the Supplementary Motor Area (SMA), and the Cingulate cortex. Involvement of cortical areas was also suggested by the analysis of GI in patients with PD and FoG. Indeed, I found major alterations in the preparatory phase of GI in these patients, possibly resulting from FoG-related deficits of the SMA. Alterations of the weight shifting preceding the stepping phase were also particularly important in PD patients with FoG, thus suggesting specific difficulties in the integration of somatosensory information at a cortical level. Of note, all patients with PD showed preserved movement timing of GI, possibly suggesting preserved and compensatory activity of the cerebellum. Postural abnormalities (i.e., increased trunk and thigh flexion) showed no relationship with GI, ruling out an adaptation of the motor pattern to the altered postural condition. In a group of PD patients implanted with DBS, I further explored the pathophysiological functioning of the locomotor network by analysing the timely activity of the Subthalamic Nucleus (STN) during static and dynamic balance control (i.e., standing and walking). For this study, I used novel DBS devices capable of delivering stimulation and simultaneously recording Local Field Potentials (LFP) of the implanted nucleus months and years after surgery. I showed a gait-related frequency shift in the STN activity of PD patients, possibly conveying cortical (feedforward) and cerebellar (feedback) information to mesencephalic locomotor areas. Based on this result, I identified for each patient a Maximally Informative Frequency (MIF) whose power changes can reliably classify standing and walking conditions. The MIF is a promising input signal for new DBS devices that can monitor LFP power modulations to timely adjust the stimulation delivery based on the ongoing motor task (e.g., gait) performed by the patient (adaptive DBS). Altogether my achievements allowed to define the role of different cortical and subcortical brain areas in locomotor control, paving the way for a better understanding of the pathophysiological dynamics of the supraspinal locomotor network and the development of tailored therapies for gait disturbances and falls prevention in PD and related disorders.
  • 1 to 10

DINI-Zertifikat     OPUS4 Logo

  • Contact
  • |
  • Imprint
  • |
  • Sitemap