Klinik und Poliklinik für Anästhesiologie (ab 2004)
Refine
Has Fulltext
- yes (280)
Is part of the Bibliography
- yes (280)
Year of publication
Document Type
- Journal article (140)
- Doctoral Thesis (139)
- Book article / Book chapter (1)
Keywords
- blood-brain barrier (11)
- Blut-Hirn-Schranke (10)
- ARDS (9)
- COVID-19 (9)
- Maligne Hyperthermie (9)
- Myokardprotektion (9)
- Schmerz (9)
- inflammation (9)
- malignant hyperthermia (8)
- molecular docking (8)
Institute
- Klinik und Poliklinik für Anästhesiologie (ab 2004) (280)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (13)
- Medizinische Klinik und Poliklinik I (10)
- Graduate School of Life Sciences (9)
- Theodor-Boveri-Institut für Biowissenschaften (9)
- Neurochirurgische Klinik und Poliklinik (8)
- Frauenklinik und Poliklinik (7)
- Kinderklinik und Poliklinik (6)
- Institut für Anatomie und Zellbiologie (5)
- Institut für Klinische Neurobiologie (5)
Sonstige beteiligte Institutionen
- Zentrallabor, Universitätsklinikum Würzburg (2)
- Apotheke, Universitätsklinikum Würzburg (1)
- Department of Medicinal Chemistry, University of Vienna, Althanstraße 14, 1090 Vienna, Austria (1)
- Department of Pharmaceutical Technology and Biopharmaceutics, University of Vienna, Althanstraße 14, 1090 Vienna, Austria (1)
- EMBL Mouse Biology Unit, Monterotondo, Italien (1)
- Interdisziplinäres Zentrum für Klinische Forschung (ZIKF), Würzburg (1)
- Klinik für Anästhesiologie, Universität Mainz (1)
- Klinik und Poliklinik für Anästhesiologie, Intensivmedizin, Notfallmedizin und Schmerztherapie des Universitätsklinikums Würzburg (1)
- Klinikum Fulda gAG (1)
- Krankenhaushygiene und Antimicrobial Stewardship (1)
EU-Project number / Contract (GA) number
- 241778 (5)
- 101003595 (1)
- 602133 (1)
- HEALTH-F2-2009-241778 (1)
Backround: In February 2021, the first formal evidence and consensus-based (S3) guidelines for the inpatient treatment of patients with COVID-19 were published in Germany and have been updated twice during 2021. The aim of the present study is to re-evaluate the dissemination pathways and strategies for ICU staff (first evaluation in December 2020 when previous versions of consensus-based guidelines (S2k) were published) and question selected aspects of guideline adherence of standard care for patients with COVID-19 in the ICU. Methods: We conducted an anonymous online survey among German intensive care staff from 11 October 2021 to 11 November 2021. We distributed the survey via e-mail in intensive care facilities and requested redirection to additional intensive care staff (snowball sampling). Results: There was a difference between the professional groups in the number, selection and qualitative assessment of information sources about COVID-19. Standard operating procedures were most frequently used by all occupational groups and received a high quality rating. Physicians preferred sources for active information search (e.g., medical journals), while nurses predominantly used passive consumable sources (e.g., every-day media). Despite differences in usage behaviour, the sources were rated similarly in terms of the quality of the information on COVID-19. The trusted organizations have not changed over time. The use of guidelines was frequently stated and highly recommended. The majority of the participants reported guideline-compliant treatment. Nevertheless, there were certain variations in the use of medication as well as the criteria chosen for discontinuing non-invasive ventilation (NIV) compared to guideline recommendations. Conclusions: An adequate external source of information for nursing staff is lacking, the usual sources of physicians are only appropriate for the minority of nursing staff. The self-reported use of guidelines is high.
Background: The adequate choice of perioperative antibiotic prophylaxis (PAP) could influence the risk of surgical site infections (SSIs) in general surgery. A new local PAP guideline was implemented in May 2017 and set the first-generation cefazolin (CFZ) instead the second-generation cefuroxime (CXM) as the new standard prophylactic antibiotic. The aim of this study was to compare the risk of SSIs after this implementation in intra-abdominal infections (IAIs) without sepsis. Methods: We performed a single center-quality improvement study at a 1500 bed sized university hospital in Germany analyzing patients after emergency surgery during 2016 to 2019 (n = 985), of which patients receiving CXM or CFZ were selected (n = 587). Propensity score matching was performed to ensure a comparable risk of SSIs in both groups. None-inferiority margin for SSIs was defined as 8% vs. 4%. Results: Two matched cohorts with respectively 196 patients were compared. The rate of SSIs was higher in the CFZ group (7.1% vs. 3.6%, p = 0.117) below the non-inferiority margin. The rate of other postoperative infections was significantly higher in the CFZ group (2.0% vs. 8.7%, p = 0.004). No other differences including postoperative morbidity, mortality or length-of-stay were observed. Conclusion: Perioperative antibiotic prophylaxis might be safely maintained by CFZ even in the treatment of intra-abdominal infections.
In a recent study, we showed in an in vitro murine cerebellar microvascular endothelial cell (cerebEND) model as well as in vivo in rats that Tumor-Treating Fields (TTFields) reversibly open the blood–brain barrier (BBB). This process is facilitated by delocalizing tight junction proteins such as claudin-5 from the membrane to the cytoplasm. In investigating the possibility that the same effects could be observed in human-derived cells, a 3D co-culture model of the BBB was established consisting of primary microvascular brain endothelial cells (HBMVEC) and immortalized pericytes, both of human origin. The TTFields at a frequency of 100 kHz administered for 72 h increased the permeability of our human-derived BBB model. The integrity of the BBB had already recovered 48 h post-TTFields, which is earlier than that observed in cerebEND. The data presented herein validate the previously observed effects of TTFields in murine models. Moreover, due to the fact that human cell-based in vitro models more closely resemble patient-derived entities, our findings are highly relevant for pre-clinical studies.
Simple Summary
Anti-hormonal therapie regimes are well established in oncological treatments in breast cancer. In contrast there is limited knowledge of their effects on metastatic brain metastases in advanced breast cancer and their ability to cross the blood brain-barrier. In this review, we point out the usual antihormonal therapy options in the primary disease, but also in metastatic breast cancer. In addition, we explain the epidemiological facts of brain metastases, as well as the basics of the blood-brain barrier and how this is overcome by metastase. Last but not least, we deal with the known anti-hormonal therapy options and present clinical studies on their intracerebral effect, as well as the known basics of their blood-brain barrier penetration. Not all common anti-hormonal therapeutics are able to penetrate the CNS. It is therefore important for the treating oncologists to use substances that have been proven to cross the BBB, despite the limited data available. Aromataseinhibitors, especially letrozole, probably also tamoxifen, everolimus and CDK4/6 inhibitors, especially abemaciclib, appear to act intracerebrally by overcoming the blood-brain barrier. Nevertheless, further data must be obtained in basic research, but also health care research in relation to patients with brain metastases.
Abstract
The molecular receptor status of breast cancer has implications for prognosis and long-term metastasis. Although metastatic luminal B-like, hormone-receptor-positive, HER2−negative, breast cancer causes brain metastases less frequently than other subtypes, though tumor metastases in the brain are increasingly being detected of this patient group. Despite the many years of tried and tested use of a wide variety of anti-hormonal therapeutic agents, there is insufficient data on their intracerebral effectiveness and their ability to cross the blood-brain barrier. In this review, we therefore summarize the current state of knowledge on anti-hormonal therapy and its intracerebral impact and effects on the blood-brain barrier in breast cancer.
The blood-brain barrier (BBB) is a highly specialized structure that separates the brain from the blood and allows the exchange of molecules between these two compartments through selective channels. The breakdown of the BBB is implicated in the development of severe neurological diseases, especially stroke and traumatic brain injury. Oxygen-glucose deprivation is used to mimic stroke and traumatic brain injury in vitro. Pathways that trigger BBB dysfunction include an imbalance of oxidative stress, excitotoxicity, iron metabolism, cytokine release, cell injury, and cell death. MicroRNAs are small non-coding RNA molecules that regulate gene expression and are emerging as biomarkers for the diagnosis of central nervous system (CNS) injuries. In this review, the regulatory role of potential microRNA biomarkers and related therapeutic targets on the BBB is discussed. A thorough understanding of the potential role of various cellular and linker proteins, among others, in the BBB will open further therapeutic options for the treatment of neurological diseases.
Protocadherins (PCDHs) belong to the cadherin superfamily and represent the largest subgroup of calcium-dependent adhesion molecules. In the genome, most PCDHs are arranged in three clusters, α, β, and γ on chromosome 5q31. PCDHs are highly expressed in the central nervous system (CNS). Several PCDHs have tumor suppressor functions, but their individual role in primary brain tumors has not yet been elucidated. Here, we examined the mRNA expression of PCDHGC3, a member of the PCDHγ cluster, in non-cancerous brain tissue and in gliomas of different World Health Organization (WHO) grades and correlated it with the clinical data of the patients. We generated a PCDHGC3 knockout U343 cell line and examined its growth rate and migration in a wound healing assay. We showed that PCDHGC3 mRNA and protein were significantly overexpressed in glioma tissue compared to a non-cancerous brain specimen. This could be confirmed in glioma cell lines. High PCDHGC3 mRNA expression correlated with longer progression-free survival (PFS) in glioma patients. PCDHGC3 knockout in U343 resulted in a slower growth rate but a significantly faster migration rate in the wound healing assay and decreased the expression of several genes involved in WNT signaling. PCDHGC3 expression should therefore be further investigated as a PFS-marker in gliomas. However, more studies are needed to elucidate the molecular mechanisms underlying the PCDHGC3 effects.
At any moment in time, cells coordinate and balance their calcium ion (Ca\(^{2+}\)) fluxes. The term ‘Ca\(^{2+}\) homeostasis’ suggests that balancing resting Ca2+ levels is a rather static process. However, direct ER Ca\(^{2+}\) imaging shows that resting Ca\(^{2+}\) levels are maintained by surprisingly dynamic Ca\(^{2+}\) fluxes between the ER Ca\(^{2+}\) store, the cytosol, and the extracellular space. The data show that the ER Ca\(^{2+}\) leak, continuously fed by the high-energy consuming SERCA, is a fundamental driver of resting Ca\(^{2+}\) dynamics. Based on simplistic Ca\(^{2+}\) toolkit models, we discuss how the ER Ca\(^{2+}\) leak could contribute to evolutionarily conserved Ca\(^{2+}\) phenomena such as Ca\(^{2+}\) entry, ER Ca\(^{2+}\) release, and Ca\(^{2+}\) oscillations.
Brain metastases are the most severe tumorous spread during breast cancer disease. They are associated with a limited quality of life and a very poor overall survival. A subtype of extracellular vesicles, exosomes, are sequestered by all kinds of cells, including tumor cells, and play a role in cell-cell communication. Exosomes contain, among others, microRNAs (miRs). Exosomes can be taken up by other cells in the body, and their active molecules can affect the cellular process in target cells. Tumor-secreted exosomes can affect the integrity of the blood-brain barrier (BBB) and have an impact on brain metastases forming. Serum samples from healthy donors, breast cancer patients with primary tumors, or with brain, bone, or visceral metastases were used to isolate exosomes and exosomal miRs. Exosomes expressed exosomal markers CD63 and CD9, and their amount did not vary significantly between groups, as shown by Western blot and ELISA. The selected 48 miRs were detected using real-time PCR. Area under the receiver-operating characteristic curve (AUC) was used to evaluate the diagnostic accuracy. We identified two miRs with the potential to serve as prognostic markers for brain metastases. Hsa-miR-576-3p was significantly upregulated, and hsa-miR-130a-3p was significantly downregulated in exosomes from breast cancer patients with cerebral metastases with AUC: 0.705 and 0.699, respectively. Furthermore, correlation of miR levels with tumor markers revealed that hsa-miR-340-5p levels were significantly correlated with the percentage of Ki67-positive tumor cells, while hsa-miR-342-3p levels were inversely correlated with tumor staging. Analysis of the expression levels of miRs in serum exosomes from breast cancer patients has the potential to identify new, non-invasive, blood-borne prognostic molecular markers to predict the potential for brain metastasis in breast cancer. Additional functional analyzes and careful validation of the identified markers are required before their potential future diagnostic use.
Ziel dieser Arbeit war der Nachweis eines neuroprotektiven Effektes von STVNA auf cerebEND Zellen der Maus in einem in vitro Modell des Schlaganfalls. Mit dem Verfahren zur Herstellung von STVNA konnte ein reines und im Vergleich zu Isosteviol in Wasser gut lösliches Produkt hergestellt werden, das die Anforderungen an eine Versuchssubstanz in einem in vitro Modell voll erfüllen konnte. Als in vitro Modell wurde das bereits bewährte Verfahren der OGD gewähl. CerebEND Zellen der Maus wurden für 4 h OGD ausgesetzt und anschließend für 4 h und 24 h mit 0, 1, 5, 10 und 20 mg/l STVNA behandelt. Direkt, 4 h und 24 h nach 4 h OGD wurden die jeweiligen Zellen geerntet und mittels Western Blot und qRT-PCR ausgewertet. Es wurden eine erhöhte Expression der Tight-Junction-Proteine Claudin-5 und Occludin, sowie ein stabilisierendes Expressionsverhalten der Transmembranproteine Integrin a 1 und Integrin a v nach Behandlung mit STVNA nachgewiesen. Ebenso wurde eine verminderte Expression des Glukosetransporters GLUT 1 beobachtet. Eine Volumenreduktion der cerebEND Zellen durch STVNA, während 4h OGD und gleichzeitiger Behandlung mit STVNA konnte ebenfalls festgestellt werden. Die Ergebnisse dieser Arbeit stützen die Thesen und Ergebnisse der aktuellen Literatur, dass STVNA neuroprotektive Eigenschaften hat.
Background
Parenteral lipid emulsions in critical care are traditionally based on soybean oil (SO) and rich in pro-inflammatory omega-6 fatty acids (FAs). Parenteral nutrition (PN) strategies with the aim of reducing omega-6 FAs may potentially decrease the morbidity and mortality in critically ill patients.
Methods
A systematic search of MEDLINE, EMBASE, CINAHL and CENTRAL was conducted to identify all randomized controlled trials in critically ill patients published from inception to June 2021, which investigated clinical omega-6 sparing effects. Two independent reviewers extracted bias risk, treatment details, patient characteristics and clinical outcomes. Random effect meta-analysis was performed.
Results
1054 studies were identified in our electronic search, 136 trials were assessed for eligibility and 26 trials with 1733 critically ill patients were included. The median methodologic score was 9 out of 14 points (95% confidence interval [CI] 7, 10). Omega-6 FA sparing PN in comparison with traditional lipid emulsions did not decrease overall mortality (20 studies; risk ratio [RR] 0.91; 95% CI 0.76, 1.10; p = 0.34) but hospital length of stay was substantially reduced (6 studies; weighted mean difference [WMD] − 6.88; 95% CI − 11.27, − 2.49; p = 0.002). Among the different lipid emulsions, fish oil (FO) containing PN reduced the length of intensive care (8 studies; WMD − 3.53; 95% CI − 6.16, − 0.90; p = 0.009) and rate of infectious complications (4 studies; RR 0.65; 95% CI 0.44, 0.95; p = 0.03). When FO was administered as a stand-alone medication outside PN, potential mortality benefits were observed compared to standard care.
Conclusion
Overall, these findings highlight distinctive omega-6 sparing effects attributed to PN. Among the different lipid emulsions, FO in combination with PN or as a stand-alone treatment may have the greatest clinical impact.