Institut für Organische Chemie
Refine
Is part of the Bibliography
- yes (562)
Year of publication
Document Type
- Journal article (320)
- Doctoral Thesis (225)
- Preprint (14)
- Book article / Book chapter (1)
- Report (1)
- Review (1)
Keywords
- Organische Chemie (135)
- Supramolekulare Chemie (30)
- Selbstorganisation (22)
- self-assembly (18)
- Farbstoff (17)
- Naphthylisochinolinalkaloide (16)
- fluorescence (16)
- Chemische Synthese (15)
- Fluoreszenz (15)
- Merocyanine (14)
Institute
- Institut für Organische Chemie (562)
- Institut für Anorganische Chemie (17)
- Theodor-Boveri-Institut für Biowissenschaften (10)
- Institut für Physikalische und Theoretische Chemie (9)
- Institut für Virologie und Immunbiologie (9)
- Institut für Pharmazie und Lebensmittelchemie (7)
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (5)
- Physikalisches Institut (5)
- Graduate School of Life Sciences (4)
- Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde (3)
Schriftenreihe
Sonstige beteiligte Institutionen
- International Max Planck Research School Molecular Biology, University of Göttingen, Germany (2)
- Agricultural Center, BASF SE, 67117 Limburgerhof, Germany (1)
- Center for Computational and Theoretical Biology (CCTB), Universität Würzburg (1)
- Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), Göttingen, Germany (1)
- Center for Nanosystems Chemistry (1)
- Center for Nanosystems Chemistry (CNC), University of Würzburg (1)
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany (1)
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague, Czech Republic (1)
- Chemical Biology Laboratory, National Cancer Institue, Frederick (USA) (1)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, Göttingen (1)
We exploited the inherent geometrical isomerism of a PtII complex as a new tool to control supramolecular assembly processes. UV irradiation and careful selection of solvent, temperature, and concentration leads to tunable coordination isomerism, which in turn allows fully reversible switching between two distinct aggregate species (1D fibers↔2D lamellae) with different photoresponsive behavior. Our findings not only broaden the scope of coordination isomerism, but also open up exciting possibilities for the development of novel stimuli-responsive nanomaterials.
Temperature-responsive luminescent solar concentrators (LSCs) have been fabricated in which the Förster resonance energy transfer (FRET) between a donor–acceptor pair in a liquid crystalline solvent can be tuned. At room temperatures, the perylene bisimide (PBI) acceptor is aggregated and FRET is inactive; while after heating to a temperature above the isotropic phase of the liquid crystal solvent, the acceptor PBI completely dissolves and FRET is activated. This unusual temperature control over FRET was used to design a color-tunable LSC. The device has been shown to be highly stable towards consecutive heating and cooling cycles, making it an appealing device for harvesting otherwise unused solar energy.
Despite significant progress in the synthesis of covalent organic frameworks (COFs), reports on the precise construction of template-free nano- and microstructures of such materials have been rare. In the quest for dye-containing porous materials, a novel conjugated framework DPP-TAPP-COF with an enhanced absorption capability up to λ=800 nm has been synthesized by utilizing reversible imine condensations between 5,10,15,20-tetrakis(4-aminophenyl)porphyrin (TAPP) and a diketopyrrolopyrrole (DPP) dialdehyde derivative. Surprisingly, the obtained COF exhibited spontaneous aggregation into hollow microtubular assemblies with outer and inner tube diameters of around 300 and 90 nm, respectively. A detailed mechanistic investigation revealed the time-dependent transformation of initial sheet-like agglomerates into the tubular microstructures.
Activating delayed fluorescence emission in a dilute solution via a non-covalent approach is a formidable challenge. In this report, we propose a strategy for efficient delayed fluorescence generation in dilute solution using a non-covalent approach via supramolecularly engineered cyclophane-based nanoenvironments that provide sufficient binding strength to π-conjugated guests and that can stabilize triplet excitons by reducing vibrational dissipation and lowering the singlet–triplet energy gap for efficient delayed fluorescence emission. Toward this goal, a novel biphenyl bisimide-derived cyclophane is introduced as an electron-deficient and efficient triplet-generating host. Upon encapsulation of various carbazole-derived guests inside the nanocavity of this cyclophane, emissive charge transfer (CT) states close to the triplet energy level of the biphenyl bisimide are generated. The experimental results of host–guest studies manifest high association constants up to 10\(^4\) M\(^{–1}\) as the prerequisite for inclusion complex formation, the generation of emissive CT states, and triplet-state stabilization in a diluted solution state. By means of different carbazole guest molecules, we could realize tunable delayed fluorescence emission in this carbazole-encapsulated biphenyl bisimide cyclophane in methylcyclohexane/carbon tetrachloride solutions with a quantum yield (QY) of up to 15.6%. Crystal structure analyses and solid-state photophysical studies validate the conclusions from our solution studies and provide insights into the delayed fluorescence emission mechanism.
Water‐soluble cationic perylene diimide dyes as stable photocatalysts for H\(_2\)O\(_2\) evolution
(2023)
Photocatalytic generation of hydrogen peroxide, H\(_2\)O\(_2\), has gained increasing attention in recent years, with applications ranging from solar energy conversion to biophysical research. While semiconducting solid‐state materials are normally regarded as the workhorse for photogeneration of H\(_2\)O\(_2\), an intriguing alternative for on‐demand H\(_2\)O\(_2\) is the use of photocatalytic organic dyes. Herein we report the use of water‐soluble dyes based on perylene diimide molecules which behave as true molecular catalysts for the light‐induced conversion of dissolved oxygen to hydrogen peroxide. In particular, we address how to obtain visible‐light photocatalysts which are stable with respect to aggregation and photochemical degradation. We report on the factors affecting efficiency and stability, including variable electron donors, oxygen partial pressure, pH, and molecular catalyst structure. The result is a perylene diimide derivative with unprecedented peroxide evolution performance using a broad range of organic donor molecules and operating in a wide pH range.
A new Ru oligomer of formula {[Ru-\(^{II}\)(bda-\(\kappa\)-N\(^2\)O\(^2\))(4,4'-bpy)]\(_{10}\)(4,4'-bpy)}, 10 (bda is [2,2'-bipyridine]-6,6'-dicarbox-ylate and 4,4'-bpy is 4,4'-bipyridine), was synthesized and thoroughly characterized with spectroscopic, X-ray, and electrochemical techniques. This oligomer exhibits strong affinity for graphitic materials through CH-\(\pi\) interactions and thus easily anchors on multiwalled carbon nanotubes (CNT), generating the molecular hybrid material 10@CNT. The latter acts as a water oxidation catalyst and converts to a new species, 10'(H\(_2\)O)\(_2\)@CNT, during the electrochemical oxygen evolution process involving solvation and ligand reorganization facilitated by the interactions of molecular Ru catalyst and the surface. This heterogeneous system has been shown to be a powerful and robust molecular hybrid anode for electrocatalytic water oxidation into molecular oxygen, achieving current densities in the range of 200 mA/cm\(^2\) at pH 7 under an applied potential of 1.45 V vs NHE. The remarkable long-term stability of this hybrid material during turnover is rationalized based on the supramolecular interaction of the catalyst with the graphitic surface.
Despite their popularity as enzyme engineering targets structural information about Sucrose Phosphorylases remains scarce. We recently clarified that the Q345F variant of Bifidobacterium adolescentis Sucrose Phosphorylase is able to accept large polyphenolic substrates like resveratrol via a domain shift. Here we present a crystal structure of this variant in a conformation suitable for the accommodation of the donor substrate sucrose in excellent agreement with the wild type structure. Remarkably, this conformation does not feature the previously observed domain shift which is therefore reversible and part of a dynamic process rather than a static phenomenon. This crystallographic snapshot completes our understanding of the catalytic cycle of this useful variant and will allow for a more rational design of further generations of Sucrose Phosphorylase variants.
The precise interplay between the mRNA codon and the tRNA anticodon is crucial for ensuring efficient and accurate translation by the ribosome. The insertion of RNA nucleobase derivatives in the mRNA allowed us to modulate the stability of the codon-anticodon interaction in the decoding site of bacterial and eukaryotic ribosomes, allowing an in-depth analysis of codon recognition. We found the hydrogen bond between the N1 of purines and the N3 of pyrimidines to be sufficient for decoding of the first two codon nucleotides, whereas adequate stacking between the RNA bases is critical at the wobble position. Inosine, found in eukaryotic mRNAs, is an important example of destabilization of the codon-anticodon interaction. Whereas single inosines are efficiently translated, multiple inosines, e.g., in the serotonin receptor 5-HT2C mRNA, inhibit translation. Thus, our results indicate that despite the robustness of the decoding process, its tolerance toward the weakening of codon-anticodon interactions is limited.
Self-assembly of multi-stranded perylene dye J-aggregates in columnar liquid-crystalline phases
(2018)
Many discoid dyes self-assemble into columnar liquid-crystalline (LC) phases with packing arrangements that are undesired for photonic applications due to H-type exciton coupling. Here, we report a series of crystalline and LC perylene bisimides (PBIs) self-assembling into single or multi-stranded (two, three, and four strands) aggregates with predominant J-type exciton coupling. These differences in the supramolecular packing and optical properties are achieved by molecular design variations of tetra-bay phenoxy-dendronized PBIs with two N–H groups at the imide positions. The self-assembly is driven by hydrogen bonding, slipped π–π stacking, nanosegregation, and steric requirements of the peripheral building blocks. We could determine the impact of the packing motifs on the spectroscopic properties and demonstrate different J- and H-type coupling contributions between the chromophores. Our findings on structure–property relationships and strong J-couplings in bulk LC materials open a new avenue in the molecular engineering of PBI J-aggregates with prospective applications in photonics.
Understanding relationships between microstructure and electrical transport is an important goal for the materials science of organic semiconductors. Combining high-resolution surface potential mapping by scanning Kelvin probe microscopy (SKPM) with systematic field effect transport measurements, we show that step edges can trap electrons on the surfaces of single crystal organic semiconductors. n-type organic semiconductor crystals exhibiting positive step edge surface potentials display threshold voltages that increase and carrier mobilities that decrease with increasing step density, characteristic of trapping, whereas crystals that do not have positive step edge surface potentials do not have strongly step density dependent transport. A device model and microelectrostatics calculations suggest that trapping can be intrinsic to step edges for crystals of molecules with polar substituents. The results provide a unique example of a specific microstructure–charge trapping relationship and highlight the utility of surface potential imaging in combination with transport measurements as a productive strategy for uncovering microscopic structure–property relationships in organic semiconductors.