Institut für Pharmazie und Lebensmittelchemie
Refine
Has Fulltext
- yes (406)
Is part of the Bibliography
- yes (406)
Year of publication
Document Type
- Doctoral Thesis (294)
- Journal article (110)
- Conference Proceeding (1)
- Review (1)
Keywords
- HPLC (15)
- Pharmakokinetik (14)
- Aminosäuren (11)
- Arzneimitteldesign (11)
- Fließverhalten (11)
- Arzneimittel (10)
- Inhibitor (10)
- Muscarinrezeptor (10)
- Bioverfügbarkeit (9)
- Instrumentelle Analytik (9)
Institute
- Institut für Pharmazie und Lebensmittelchemie (406)
- Institut für Pharmakologie und Toxikologie (11)
- Graduate School of Life Sciences (10)
- Institut für Molekulare Infektionsbiologie (8)
- Klinik und Poliklinik für Nuklearmedizin (8)
- Institut für Organische Chemie (7)
- Medizinische Klinik und Poliklinik II (7)
- Theodor-Boveri-Institut für Biowissenschaften (7)
- Medizinische Klinik und Poliklinik I (5)
- Rudolf-Virchow-Zentrum (5)
Sonstige beteiligte Institutionen
- Universität Belgrad, Serbien (2)
- ACC GmbH Analytical Clinical Concepts (1)
- Apotheke, Universitätsklinikum Würzburg (1)
- Bayer AG, Research & Development, Pharmaceuticals, Investigational Toxicology (1)
- Bundesinstitut für Arzneimittel und Medizinprodukte (1)
- Friedrich-Schiller-Universität Jena (1)
- Helmholtz Institute for RNA-based Infection Biology (HIRI), Josef-Schneider-Straße 2/D15, DE-9708 Wuerzburg, Germany (1)
- Helmholtz Institute for RNA-based Infection Biology (HIRI), Josef-Schneider-Straße 2/D15, DE-97080 Wuerzburg, Germany (1)
- IBMP - Institut für Biomedizinische und Pharmazeutische Forschung in Nürnberg-Heroldsberg (1)
- Johns Hopkins School of Medicine (1)
EU-Project number / Contract (GA) number
- 26230120009 (1)
- 296679 (1)
- 311932 (1)
- 314911 (1)
- 701983 (1)
The field of photopharmacology has attracted considerable attention due to applying the spatial and temporal precision of light to pharmacological systems. Photoswitchable biologically active compounds have proven useful in the field of G protein-coupled receptors (GPCRs), which are of tremendous therapeutic relevance. Generally, the pharmacology of GPCRs is complex, perhaps even more complex than originally thought. Suitable tools are required to dissect the different signalling pathways and mechanisms and to unravel how they are connected in a holistic image. This is reflected in the enormous scientific interest in CB2R, as the neuroprotective and immunomodulatory effects attributed to CB2R agonists have not yet translated into effective therapeutics. This work focused on the development of a novel photoswitchable scaffold based on the privileged structure of benzimidazole and its application in photoswitchable CB2R ligands as photopharmacological tools for studying the CB2R.
The visible-light photoswitchable ligand 10d enables the investigation of CB2R activation with regard to βarr2 bias, exhibiting a unique pharmacological profile as a “cis-on” affinity switch at receptor level and as a “trans-on” efficacy-switch in βarr2-mediated receptor internalization. The novel photoswitchable scaffold developed in this work further serves as a guide for the development of novel photoswitchable GPCR ligands based on the privileged structure of benzimidazole. To obtain a different tool compound for studying CB2R activation and signalling mechanisms, a previously reported putatively dualsteric CB2R ligand was rendered photoswitchable, by linking the orthosteric agonist to a CB2R-selective PAM via photoswitchable azobenzene. Compound 27-para exhibits a desirable “cis-on” behaviour across all investigated assays with >10-fold higher potency compared to its trans-isomer and can be used as an efficacy-switch employing specific concentrations.
Site-directed bioorthogonal conjugation techniques have substantially advanced research in numerous areas. Their exceptional value reflects in the extent of applications, that have been realized with spacial-controlled bioorthogonal reactions. Specific labeling of surfaces, proteins, and other biomolecule allows for new generations of drug delivery, tracking, and analyzing systems. With the continuous advance and refinement of available methods, this field of research will become even more relevant in the time to come. Yet, as individual as the desired purpose is, as different can be the most suitable modification strategy. In this thesis, two different bioconjugation approaches, namely CuAAC and factor XIIIa mediated ligation, are used in distinct application fields, featuring eGFP as a model protein showcasing the advantages as well as the challenges of each technique.
The introduction of a unique accessible functionality is the most critical feature of a site-specific reaction, and the first considerable hurdle to clear. While most surfaces, peptides, or small molecules might require less expenditure to modulate, equipping large biomolecules like proteins with additional traits requires careful consideration to preserve the molecule’s stability and function. Therefore, the first section of this project comprises the engineering of eGFP via rational design. Initially, wild-type eGFP was subcloned, expressed, and characterized to serve as a reference value for the designed variants. Subsequently, eGFP was mutated and expressed to display a recognition site for factor XIIIa. Additionally, a second mutant harbored a TAG-codon to enable amber codon suppression and consequently the incorporation of the alkyne bearing unnatural amino acid Plk to support a CuAAC reaction. Fluorescence spectroscopy was used to confirm that the fluorescent properties of all expressed muteins were identically equal to wild-type eGFP, which is a reliable marker for the intact barrel structure of the protein. Trypsin digestion and HPLC were deployed to confirm each protein variant's correct sequence and mass.
The second part of this work focuses on the conjugation of cargo molecules deploying the chosen approaches. Solid-phase peptide synthesis was used to create a peptide that served as a lysine donor substrate in the crosslinking mechanism of FXIIIa. Additionally, the peptide was provided with a cysteine moiety to allow for highly flexible and simple loading of desired cargo molecules via conventional thiol-Michael addition, thus establishing an adaptive labeling platform. The effective ligation was critically reviewed and confirmed by monitoring the exact mass changes by HPLC. Protocols for attaching payloads such as biotin and PEG to the linker peptide were elaborated. While the biotin construct was successfully conjugated to the model protein, the eGFP-PEG linkage was not achieved judging by SDS-PAGE analysis. Furthermore, featuring isolated peptide sequences, the properties of the FXIIIa-mediated reaction were characterized in detail. Relative substrate turnover, saturation concentrations, by-product formation, and incubation time were comprehensively analyzed through HPLC to identify optimal reaction conditions. CuAAC was successfully used to label the Plk-eGFP mutein with Azide-biotin, demonstrated by western blot imaging.
Within the last part of this study, the application of the conjugation systems was extended to different surfaces. As regular surfaces do not allow for immediate decoration, supplementary functionalization techniques like gold-thiol interaction and silanization on metal oxides were deployed. That way gold-segmented nanowires and Janus particles were loaded with enoxaparin and DNA, respectively. Nickel and cobalt nanowires were modified with silanes that served as linker molecules for subsequent small molecule attachment or PEGylation. Finally, the eGFP muteins were bound to a particle surface in a site-specific manner. Beads displaying amino groups were utilized to demonstrate the effective use of FXIIIa in surface modification. Moreover, the bead’s functional moieties were converted to azides to enable CuAAC “Click Chemistry” and direct comparison. Each modification was analyzed and confirmed through fluorescence microscopy.
The aim of the present work was to improve drug monitoring in patients with various diseases in the context of precision medicine. This was pursued through the development and validation of mass spectrometric methods for determining the drug concentrations of kinase inhibitors and their clinical application. Besides conventional approaches to determine plasma level concentrations, the focus was also on alternative sampling techniques using volumetric absorptive microsampling (VAMS).
A conventional LC-MS/MS method was developed for the determination of cabozantinib in human EDTA plasma and validated according to the guidelines of the European and United States drug authorities (EMA, FDA). The method met the required criteria for linearity, accuracy and precision, selectivity, sensitivity, and stability of the analyte. Validation was also performed for dilution integrity, matrix effect, recovery, and carry-over, with results also in accordance with the requirements. The importance of monitoring the exposure of cabozantinib was demonstrated by a clinical case report of a 34-year-old female patient with advanced adrenocortical carcinoma who also required hemodialysis due to chronic kidney failure. Expected cabozantinib plasma concentrations were simulated for this off-label use based on a population pharmacokinetic model. It was shown that the steady state trough levels were much lower than expected but could not be explained by hemodialysis. Considering the critical condition and potential drug-drug interaction with metyrapone, a substance the patient had taken among several others during the observation period, individual pharmacokinetics could consequently not be estimated without drug monitoring.
In addition, a VAMS method for simultaneous determination of ten kinase inhibitors from capillary blood was developed. This microsampling technique was mainly characterized by the collection of a defined volume of blood, which could be dried and subsequently analyzed. The guidelines for bioanalytical method validation of the EMA and FDA were also used for this evaluation. As the nature of dried blood samples differs from liquid matrices, further parameters were investigated. These include the investigation of the hematocrit effect, process efficiency, and various stability conditions, for example at increased storage temperatures. The validation showed that the developed method is suitable to analyze dried matrix samples accurate, precise, and selective for all analytes. Apart from the stability tests, all acceptance criteria were met. The decreased stability of two analytes was probably due to the reproducible but reduced recovery. In vitro studies provided results on the VAMS-to-plasma correlation to predict the analyte distribution between both matrices, at least in an exploratory manner. It revealed a heterogeneous picture of analytes with different VAMS-to-plasma distributions. Furthermore, the analysis of 24 patient samples indicated the applicability of at-home VAMS. Both should be confirmed later as part of the clinical validation.
The clinical investigation of the VAMS method pursued two objectives. On the one hand, the simultaneous collection of VAMS and serum samples should enable a conversion of the determined concentrations and, on the other hand, the feasibility of autonomous microsampling at home should be examined more closely. For the former, it could be shown that different conversion methods are suitable for converting VAMS concentrations into serum levels. The type of conversion was secondary for the prediction. However, the previously defined criteria could not be fulfilled for all five kinase inhibitors investigated. The framework conditions of the study led to increased variability, especially for analytes with short half-life. A low and varying hematocrit, caused by the underlying disease, also made prediction difficult for a specific patient collective. For the second objective, investigating the feasibility of VAMS, different aspects were considered. It could be shown that the majority of patients support home-based microsampling. The acceptance is likely to increase even further when microsampling is no longer part of a non-interventional study, but participation is accompanied by targeted monitoring and subsequent adjustment of the therapy. The fact that additional training increases understanding of the correct sampling procedure is also a source of confidence. Demonstrated stability during storage under real-life conditions underlines the practicality of this sampling technique.
Taken together, mass spectrometric methods for both plasma and VAMS could be developed and validated, and their clinical application could be successfully demonstrated. The availability of simple bioanalytical methods to determine kinase inhibitor exposure could improve access to prospective studies and thus facilitate the implementation of routine therapeutic drug monitoring.
Staphylococcus epidermidis, the common inhabitant of human skin and mucosal surfaces has emerged as an important pathogen in patients carrying surgical implants and medical devices. Entering the body via surgical sites and colonizing the medical devices through formation of multi-layered biofilms leads to refractory and persistent device-related infections (DRIs). Staphylococci organized in biofilms are more tolerant to antibiotics and immune responses, and thus are difficult-to-treat. The consequent morbidity and mortality, and economic losses in health care systems has strongly necessitated the need for development of new anti-bacterial and anti-biofilm-based therapeutics. In this study, we describe the biological activity of a marine sponge-derived Streptomyces sp. SBT348 extract in restraining staphylococcal growth and biofilm formation on polystyrene, glass, medically relevant titan metal, and silicone surfaces. A bioassay-guided fractionation was performed to isolate the active compound (SKC3) from the crude SBT348 extract. Our results demonstrated that SKC3 effectively inhibits the growth (MIC: 31.25 \(\mu\)g/ml) and biofilm formation (sub-MIC range: 1.95-<31.25 \(\mu\)g/ml) of S. epidermidis RP62A in vitro. Chemical characterization of SKC3 by heat and enzyme treatments, and mass spectrometry (HRMS) revealed its heat-stable and non-proteinaceous nature, and high molecular weight (1258.3 Da). Cytotoxicity profiling of SKC3 in vitro on mouse fibroblast (NIH/3T3) and macrophage (J774.1) cell lines, and in vivo on the greater wax moth larvae Galleria mellonella revealed its non-toxic nature at the effective dose. Transcriptome analysis of SKC3 treated S. epidermidis RP62A has further unmasked its negative effect on central metabolism such as carbon flux as well as, amino acid, lipid, and energy metabolism. Taken together, these findings suggest a potential of SKC3 as a putative drug to prevent staphylococcal DRIs.
Over the years, hydrogels have been developed and used for a huge variety of different applications ranging from drug delivery devices to medical products. In this thesis, a poly(2-methyl-2-oxazoline) (POx) / poly(2-n-propyl-2-oxazine) (POzi) bioink was modified and analyzed for the use in biofabrication and targeted drug delivery. In addition, the protein fibrinogen (Fbg) was genetically modified for an increased stability towards plasmin degradation for its use as wound sealant.
In Chapter 1, a thermogelling, printable POx/POzi-based hydrogel was modified with furan and maleimide moieties in the hydrophilic polymer backbone facilitating post-printing maturation of the constructs via Diels-Alder chemistry. The modification enabled long-term stability of the hydrogel scaffolds in aqueous solutions which is necessary for applications in biofabrication or tissue engineering. Furthermore, we incorporated RGD-peptides into the hydrogel which led to cell adhesion and elongated morphology of fibroblast cells seeded on top of the scaffolds. Additional printing experiments demonstrate that the presented POx/POzi system is a promising platform for the use as a bioink in biofabrication.
Chapter 2 highlights the versatility of the POx/POzi hydrogels by adapting the system to a use in targeted drug delivery. We used a bioinspired approach for a bioorthogonal conjugation of insulin-like growth factor I (IGF-I) to the polymer using an omega-chain-end dibenzocyclooctyne (DBCO) modification and a matrix metalloprotease-sensitive peptide linker. This approach enabled a bioresponsive release of IGF-I from hydrogels as well as spatial control over the protein distribution in 3D printed constructs which makes the system a candidate for the use in personalized medicine.
Chapter 3 gives a general overview over the necessity of wound sealants and the current generations of fibrin sealants on the market including advantages and challenges. Furthermore, it highlights trends and potential new strategies to tackle current problems and broadens the toolbox for future generations of fibrin sealants.
Chapter 4 applies the concepts of recombinant protein expression and molecular engineering to a novel generation of fibrin sealants. In a proof-of-concept study, we developed a new recombinant fibrinogen (rFbg) expression protocol and a Fbg mutant that is less susceptible to plasmin degradation. Targeted lysine of plasmin cleavage sites in Fbg were exchanged with alanine or histidine in different parts of the molecule. The protein was recombinantly produced and restricted plasmin digest was analyzed using high resolution mass spectrometry. In addition to that, we developed a novel time resolved screening protocol for the detection of new potential plasmin cleavage sites for further amino acid exchanges in the fibrin sealant.
Kovalente Inhibition stellt einen effektiven Weg dar, die Verweildauer des Liganden innerhalb einer Bindetasche zu erhöhen. In dieser Arbeit wurden theoretische Methoden angewendet, um die Reaktivität und den nichtkovalenten Zustand vor der Reaktion zu modellieren. Im Rahmen einer Fallstudie zu Cathepsin K wurden nichtkovalente Modelle von kovalenten Inhibitoren generiert. Für verschiedene Komplexe aus Cathepsin K und einem kovalent gebundenem Liganden wurde der Zustand vor der Reaktion modelliert und dessen Stabilität im Rahmen einer klassischen MD-Simulation überprüft. Die Stabilität des Warheads in der Bindetasche hing hauptsächlich vom gewählten Protonierungszustand der katalytischen Aminosäuren ab. Für eine Reihe von Inhibitoren der ChlaDUB1 wurde ein Protokoll aus quantenmechanischen Rechnungen genutzt, um die Reaktivität verschiedener Warheads abzuschätzen. Die erhaltenen Aktivierungsenergien korrelierten mit experimentell bestimmten Raten zur Inaktivierung des Enzyms. Im Rahmen eines Wirkstoffdesign-Projektes zur Deubiquitinase USP28 wurden von unpublizierten Kristallstrukturen ausgehend erste Docking-Experimente durchgeführt. Es konnte gezeigt werden, dass ein literaturbekannter Inhibitor von USP28 mit einem Warhead so modifiziert werden kann, dass die reaktive Einheit in direkter Nachbarschaft zu einem Cystein positioniert wird. Für diese Warheads wurden ebenfalls quantenmechanische Rechnungen zur Bestimmung der Aktivierungsenergie durchgeführt. Um besser nachvollziehen zu können, warum bei einem Photoswitch-Inhibitor der Butyrylcholin-Esterase der cis-Zustand des Moleküls besser inhibiert als der trans-Zustand, wurde eine Docking-Studie des Zustandes vor der Reaktion durchgeführt. Es konnte ein qualitatives Modell aufgestellt werden, das zeigt, dass der trans-Zustand aufgrund seiner längeren Form mit wichtigen Aminosäuren am Eingang der Bindungstasche kollidiert.
Delayed and limited administration of the JAKinib tofacitinib mitigates chronic DSS-induced colitis
(2023)
In inflammatory bowel disease, dysregulated T cells express pro-inflammatory cytokines. Using a chronic azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced colitis model resembling ulcerative colitis, we evaluated whether and when treatment with the Janus kinase (JAK) inhibitor tofacitinib could be curative. Comparing the treatment with two and three cycles of tofacitinib medication in drinking water – intermittently with DSS induction – revealed that two cycles were not only sufficient but also superior over the 3-x regimen. The two cycles of the 2-x protocol paralleled the second and third cycles of the longer protocol. T cells were less able to express interferon gamma (IFN-γ) and the serum levels of IFN-γ, interleukin (IL)-2, IL-6, IL-17, and tumor necrosis factor (TNF) were significantly reduced in sera, while those of IL-10 and IL-22 increased under the 2-x protocol. Likewise, the frequency and effector phenotype of regulatory T cells (Tregs) increased. This was accompanied by normal weight gain, controlled clinical scores, and restored stool consistency. The general and histologic appearance of the colons revealed healing and tissue intactness. Importantly, two phases of tofacitinib medication completely prevented AOM-incited pseudopolyps and the hyper-proliferation of epithelia, which was in contrast to the 3-x regimen. This implies that the initial IBD-induced cytokine expression is not necessarily harmful as long as inflammatory signaling can later be suppressed and that time-restricted treatment allows for anti-inflammatory and tissue-healing cytokine activities.
In DNA-encoded library synthesis, amine-substituted building blocks are prevalent. We explored isocyanide multicomponent reactions to diversify DNA-tagged amines and reported the Ugi-azide reaction with high yields and a good substrate scope. In addition, the Ugi-aza-Wittig reaction and the Ugi-4-center-3-component reaction, which used bifunctional carboxylic acids to provide lactams, were explored. Five-, six-, and seven-membered lactams were synthesized from solid support-coupled DNA-tagged amines and bifunctional building blocks, providing access to structurally diverse scaffolds.
The binding of drugs to plasma proteins is an important process in the human body and has a significant influence on pharmacokinetic parameter. Human serum albumin (HSA) has the most important function as a transporter protein. The binding of ketamine to HSA has already been described in literature, but only of the racemate. The enantiomerically pure S-ketamine is used as injection solution for induction of anesthesia and has been approved by the Food and Drug Administration for the therapy of severe depression as a nasal spray in 2019. The question arises if there is enantioselective binding to HSA. Hence, the aim of this study was to investigate whether there is enantioselective binding of S-and R-ketamine to HSA or not. Ultrafiltration (UF) followed by chiral capillary electrophoretic analysis was used to determine the extent of protein binding. Bound fraction to HSA was 71.2 % and 64.9 % for enantiomerically pure R- and S-ketamine, respectively, and 66.5 % for the racemate. Detailed binding properties were studied by Saturation Transfer Difference (STD)-, waterLOGSY- and Carr-Purcell-Meiboom-Gill (CPMG)-NMR spectroscopy. With all three methods, the aromatic ring and the N-methyl group could be identified as the structural moieties most strongly involved in binding of ketamine to HSA. pK\(_{aff}\) values determined using UF and NMR indicate that ketamine is a weak affinity ligand to HSA and no significant differences in binding behavior were found between the individual enantiomers and the racemate.
Highlights
• Synthesis of a new tracer molecule.
• Robust and easy screening method for a broad range of compound activities.
• FP assay validation considering limited use of starting material, DMSO tolerance, variation in incubation time and temperature.
• Possibility of extension to HTP assay.
Abstract
The macrophage infectivity potentiator (Mip) protein belongs to the immunophilin superfamily. This class of enzymes catalyzes the interconversion between the cis and trans configuration of proline-containing peptide bonds. Mip has been shown to be important for the virulence of a wide range of pathogenic microorganisms, including the Gram-negative bacterium Burkholderia pseudomallei. Small molecules derived from the natural product rapamycin, lacking its immunosuppression-inducing moiety, inhibit Mip's peptidyl-prolyl cis-trans isomerase (PPIase) activity and lead to a reduction in pathogen load in vitro. Here, a fluorescence polarization assay (FPA) to enable the screening and effective development of BpMip inhibitors was established. A fluorescent probe was prepared, derived from previous pipecolic scaffold Mip inhibitors labeled with fluorescein. This probe showed moderate affinity for BpMip and enabled a highly robust FPA suitable for screening large compound libraries with medium- to high-throughput (Z factor ∼ 0.89) to identify potent new inhibitors. The FPA results are consistent with data from the protease-coupled PPIase assay. Analysis of the temperature dependence of the probe's binding highlighted that BpMip's ligand binding is driven by enthalpic rather than entropic effects. This has considerable consequences for the use of low-temperature kinetic assays.