Institut für Physikalische und Theoretische Chemie
Refine
Has Fulltext
- yes (232)
Is part of the Bibliography
- yes (232)
Year of publication
Document Type
- Doctoral Thesis (139)
- Journal article (74)
- Preprint (19)
Keywords
- Spektroskopie (19)
- Exziton (17)
- Ultrakurzzeitspektroskopie (14)
- Theoretische Chemie (12)
- Femtosekundenspektroskopie (11)
- Kohlenstoff-Nanoröhre (11)
- Raman-Spektroskopie (10)
- Angeregter Zustand (9)
- Molekulardynamik (8)
- Photodissoziation (8)
Institute
- Institut für Physikalische und Theoretische Chemie (232)
- Institut für Anorganische Chemie (19)
- Institut für Organische Chemie (11)
- Physikalisches Institut (9)
- Graduate School of Science and Technology (3)
- Institut für Pharmazie und Lebensmittelchemie (2)
- Fakultät für Physik und Astronomie (1)
- Institut für Virologie und Immunbiologie (1)
- Theodor-Boveri-Institut für Biowissenschaften (1)
Sonstige beteiligte Institutionen
- Arizona State University, Tempe, Arizona, USA (1)
- Center for Nanosystems Chemistry (CNC), Universität Würzburg (1)
- Center for Nanosystems Chemistry (CNC), Universität Würzburg, Am Hubland, 97074 Würzburg, Germany (1)
- Center of Excellence for Science and Technology - Integration of Mediterranean region (STIM), Faculty of Science, University of Split, Poljička cesta 35, 2100 Split, Croatia (1)
- Charles University, Faculty of Mathematics and Physics, Ke Karlovu 5, 121 16 Prague, Czech Republic (1)
- Departamento de Química, Facultad de Ciencias, Universidad Autónoma de Madrid, 28049 Madrid, Spain (1)
- Department of Chemistry, Humboldt Universität zu Berlin, Brook-Taylor-Strasse 2, 12489 Berlin, Germany (1)
- Department of Chemistry, Sungkyunkwan University, 440-746 Suwon, Republic of Korea (1)
- Fachbereich Physik, Universität Konstanz, D-78464 Konstanz, Germany (1)
- Fakultät für Physik, Universität Bielefeld (1)
ResearcherID
- B-1911-2015 (1)
- M-1240-2017 (1)
- N-3741-2015 (1)
Highlights
• A sequential synthetic protocol affords a stacked merocyanine hetero-foldamer
• Exciton coupling leads to a band structure for panchromatic light absorption
• Ultrafast energy transfer affords the population of a highly emissive lowest state
• Fluorescence brightness increases 14-fold for panchromatic light absorption
Summary
Natural photosystems accomplish panchromatic light absorption by different chromophores that are non-covalently embedded in protein matrices and mostly lack close dye-dye interactions. In this article, we introduce a light-harvesting (LH) system established by four different merocyanine dyes that are co-facially stacked by dipole-dipole interactions and a peptide-like backbone in a folded heteromer architecture to afford a panchromatic absorption band consisting of several strongly coupled exciton states. This exciton manifold allows for ultrafast and efficient energy transport in the artificial antenna. Furthermore, due to the tight stacking of the dyes in their folded state, non-radiative processes are slowed down, thereby increasing the lifetime of the excited state and the fluorescence quantum yield from <3% for the individual dyes up to 38% for the folda-heteromer. Together with the panchromatic absorption, this leads to a substantial improvement of the fluorescence brightness upon broadband excitation in comparison with its constituent chromophores.
Periodic shadowing, a concept used in spectroscopy for stray light reduction, has been implemented to improve the temporal contrast of streak camera imaging. The capabilities of this technique are first proven by imaging elastically scattered picosecond laser pulses and are further applied to fluorescence lifetime imaging, where more accurate descriptions of fluorescence decay curves were observed. This all-optical approach can be adapted to various streak camera imaging systems, resulting in a robust technique to minimize space-charge induced temporal dispersion in streak cameras while maintaining temporal coverage and spatial information.
In this work, two techniques, based on the established method of pump--probe spectroscopy were used to investigate the properties of molecular systems in the liquid phase within the visible spectral wavelength range.
The first technique is standard transient absorption (TA) spectroscopy which was applied to a diazo-precursor to identify the formation of a biradical in an inert solvent after UV excitation. With the combination of EPR spectroscopy and quantum chemical calculations, the formation of a biradical in an unpolar and non-protic solvent was proven. Besides, in the presence of air or a polar and protic solvent, the biradical reacts ultrafast to various side products.
The second technique is time-resolved circular dichroism (TRCD) spectroscopy, which was performed in two different ways. The first approach based on a pulse-enantiomer (PE) setup, where an initially circularly polarized pulse was split into two pulses, of which one was mirrored under normal incidence, to flip its polarization. The result was two pulses with mirrored polarization states that propagate collinearly to the sample as left and right circularly polarized probe pulses. The alignment procedure as well as the drawbacks of this setup are described in detail.
However, a new TRCD setup was built that used a polarization grating to get left and right circularly polarized pulses. With the experiences of working with the PE setup, the new TRCD setup could be optimized so that TRCD spectra of a chiral squaraine polymer could be measured. With the help of quantum chemical calculations, the signals were assigned to exciton dynamics that describe spatial and energetic rearrangements of the excitation energy. The alignment and the measurement procedures to perform TRCD spectroscopy with the new setup are described in detail for future experiments.
A novel time-resolved pump–probe spectroscopic approach that enables to keep high resolution in both the time and energy domain, nanosecond excitation–picosecond ionization–picosecond infrared probe (ns–ps–ps TRIR) spectroscopy, has been applied to the trans-4-methylformanilide–water (4MetFA–W) cluster. Water migration dynamics from the CO to the NH binding site in a peptide linkage triggered by photoionization of 4MetFA–W is directly monitored by the ps time evolution of IR spectra, and the presence of an intermediate state is revealed. The time evolution is analyzed by rate equations based on a four-state model of the migration dynamics. Time constants for the initial to the intermediate and hot product and to the final product are obtained. The acceleration of the dynamics by methyl substitution and the strong contribution of intracluster vibrational energy redistribution in the termination of the solvation dynamics is suggested. This picture is well confirmed by the ab initio on-the-fly molecular dynamics simulations. Vibrational assignments of 4MetFA and 4MetFA–W in the neutral (S0 and S1) and ionic (D0) electronic states measured by ns IR dip and electron-impact IR photodissociation spectroscopy are also discussed prior to the results of time-resolved spectroscopy.
Single-layer transition metal dichalcogenides are at the center of an ever increasing research effort both in terms of fundamental physics and applications. Exciton–phonon coupling plays a key role in determining the (opto)electronic properties of these materials. However, the exciton–phonon coupling strength has not been measured at room temperature. Here, we use two-dimensional micro-spectroscopy to determine exciton–phonon coupling of single-layer MoSe2. We detect beating signals as a function of waiting time induced by the coupling between A excitons and A′1 optical phonons. Analysis of beating maps combined with simulations provides the exciton–phonon coupling. We get a Huang–Rhys factor ~1, larger than in most other inorganic semiconductor nanostructures. Our technique offers a unique tool to measure exciton–phonon coupling also in other heterogeneous semiconducting systems, with a spatial resolution ~260 nm, and provides design-relevant parameters for the development of optoelectronic devices.
Photolumineszenzmikroskopie und -spektroskopie endohedraler Farbstoffe in Bornitridnanoröhren
(2024)
Im Rahmen der vorliegenden Dissertation wurde untersucht, wie die Einkapselung organischer Farbstoffmoleküle in Bornitridnanoröhren (BNNTs) die photophysikalischen Eigenschaften der Fluorophore beeinflusst. Als Farbstoffe wurden hierbei alpha-Quaterthiophen (4T), alpha-Sexithiophen (6T), alpha-Octithiophen (8T) sowie Nilrot (NR) ausgewählt. Die eingesetzten BNNTs besitzen einen nominellen Durchmesser von \(5 \pm 2\)nm.
Für die Charakterisierung der reinen Farbstoffe und der hybriden Systeme aus Farbstoff und Nanoröhre kam ein Laboraufbau zum Einsatz, der neben Absorptions- und Photolumineszenz (PL)-Spektroskopie auch PL-Mikroskopie ermöglicht. Zusätzlich lässt sich damit auch eine zeitaufgelöste Untersuchung der PL (engl. time correlated single photon counting, TCSPC) im Ensemble und an einzelnen, separierten Nano-Objekten (mit Farbstoff gefüllte BNNTs) umsetzen.
In Kapitel 5 wurden zunächst die freien Farbstoffe in Lösung charakterisiert. Es hat sich gezeigt, dass sowohl 4T als auch NR im verwendeten Lösemittel Dimethylformamid (DMF) löslich sind, wohingegen 6T und 8T hier eine geringere Löslichkeit zeigen. Die unterschiedlichen Verläufe der konzentrationsabhängigen PL-Spektren für 4T und 6T in DMF lassen sich vermutlich auf diesen Löslichkeitsunterschied zurückführen. Zudem wurden Extinktionskoeffizienten für 4T und NR mittels konzentrationsabhängiger Absorptionsspektren bestimmt und es zeigte sich eine gute Übereinstimmung mit der Literatur. Für 6T und 8T war eine Bestimmung aufgrund der geringen Löslichkeit nicht möglich, weshalb auf Literaturwerte zurückgegriffen wurde oder diese extrapoliert wurden (8T).
In Kapitel 6 erfolgte die detaillierte Charakterisierung der mit Oligothiophenen gefüllten BNNTs. Die Befüllung wurde dabei im Wesentlichen nach einem von C. Allard publizierten Verfahren durchgeführt und auf die zusätzlichen Fluorophore 4T, 8T und NR übertragen. Für Messungen mittels UV-Vis-Spektroskopie in Lösung bzw. Dispersion hat sich beim Farbstoff 6T gezeigt, dass sich das Absorptionsmaximum von 407nm (freies 6T) hin zu 506nm (6T@BNNT) verschiebt. Ursache hierfür ist vermutlich die Bildung von J-Aggregaten im Inneren der Röhren. Die entsprechenden PL-Spektren von freiem 6T und dem Hybridsystem zeigen dabei keine signifikanten Unterschiede. Für konzentrationsabhängige PL-Spektren von 6T@BNNT ergibt sich (anders als bei freiem 6T in DMF) keine Änderung des Verlaufs der Kurven, was als ein Indiz für eine erfolgreiche Einkapselung gedeutet werden kann.
Durch Kombination von Rasterkraft- und PL-Mikroskopie konnten die Außendurchmesser von einzelnen 6T@BNNT Objekten ermittelt und in direkten Zusammenhang mit deren photophysikalischen Eigenschaften gebracht werden. Bei einer Analyse der Polarisation des Emissionslichtes von 6T@BNNT in Abhängigkeit des Außendurchmessers ließ sich jedoch keine klare Korrelation zwischen Struktur und Emissionscharakteristiken erkennen. Diese Beobachtung lässt sich vermutlich dadurch erklären, dass mit Hilfe der Rasterkraftmikroskopie lediglich der Außendurchmesser der (teils mehrwandigen) BNNTs bestimmt werden kann. Die entscheidende Größe an dieser Stelle ist allerdings der innere Durchmesser der BNNTs, welcher die Ausrichtung und damit auch die Polarisation der Farbstoffmoleküle beeinflusst.
Ein Vergleich des mittleren maximalen Polarisationsgrades der jeweiligen Hybridsysteme hat gezeigt, dass 4T@BNNT den geringsten und 6T@BNNT mit den höchsten Wert aufweist. Dies bestätigt die Annahme, dass mit zunehmender Moleküllänge die Polarisation, aufgrund des höheren Templat-Effektes der Röhre, zunimmt. 8T@BNNT liegt zwischen den beiden anderen Werten, was dieser Annahme widerspricht. Der mittlere Verkippungswinkel der eingekapselten Farbstoffmoleküle gegenüber der Röhrenachse liegt für 4T@BNNT bei etwa 16° und ist damit etwas größer als derjenige von 6T@BNNT. Somit zeigt sich auch hier, dass kürzere Moleküle mehr sterische Freiheitsgerade im Innern der Röhren besitzen. Für 8T@BNNT liegt der Winkel bei ca. 28° und widerspricht abermals der Annahme.
TCSPC-Messungen an freien Oligothiophen-Farbstoffen sowie an den hybriden Systemen zeigten, dass die Fluoreszenzlebensdauer \(\tau\) für 4T und 6T (jeweils in DMF) infolge der Einkapselung deutlich zunimmt wenn die Hybridsysteme ebenfalls in DMF dispergiert sind. Die ermittelten Werte für \(\tau\) der separierten Nanoobjekte lagen für 4T@BNNT und 6T@BNNT unterhalb der entsprechenden in DMF. Für 8T bzw. 8T@BNNT ergab sich eine deutlich kürzerer Lebensdauer der separierten Nanoobjekte im Vergleich zum freien Farbstoff in kolloidaler Suspension. Ein erster Ansatz, um den zugrundeliegende Mechanismus aufzuklären, bestand darin, die TCSPC-Spektren (für 6T in DMF und 6T@BNNT in DMF) hinsichtlich der einzelnen Zerfallskanäle zu analysieren. Die erhaltenen Ergebnisse deuteten darauf hin, dass bei freiem 6T in DMF andere Zerfallskanäle dominieren als beim Hybridsystem 6T@BNNT (in DMF). Eine Korrelation der Fluorezenslebensdauer von 6T@BNNT vom äußeren Durchmesser der Nanoröhren zeigte keinen eindeutigen Zusammenhang.
Die Charakterisierung von Nilrot bzw. NR@BNNT (analog zu den Oligothiophenen) erfolgte in Kapitel 4. Auch hier zeigte sich eine Verschiebung des PL-Spektrums des Fluorophores durch die Einkapselung in die BNNTs. Allerdings ist das PL-Spektrum des Hybridsystems (NR@BNNT) um etwa 20nm hypsochrom verschoben. Nilrot ist in der Literatur zudem als Nanosonde zur Ermittlung der Permittivität des Lösemittels bzw. der Umgebung bekannt. Dies erlaubte eine Abschätzung der relativen Permittivät im Inneren der BNNTs. Der ermittelte Wert von ca. 4 für ein isoliertes NR@BNNT Objekt deutet auf eine relativ unpolare Umgebung im Röhreninneren hin. Zum Vergleich dazu, liegt der Wert von freiem NR in DMF bei 47, was die relativ hohe Polarität von DMF bestätigt. Der ermittelte Wert für die mittlere maximale Polarisation lag leicht über dem der hybriden Systeme aus Oligothiophenen und Nanoröhren. Für die Auslenkung der NR-Moleküle gegenüber der Röhrenachse ergab sich ein Winkel von etwa 16°, was im Bereich der Werte von 4T@BNNT und 6T@BNNT liegt. Die Messung der zeitaufgelösten Fluoreszenz von freiem und eingekapseltem Nilrot hat ergeben, dass auch in diesem Fall eine Verkürzung der Lebensdauer (von 4091 ps auf 812 ps) erfolgte. Eine solche Verkürzung der Lebensdauer von Chromophoren wird in der Literatur unter anderem mit der Bildung von J-Aggregaten in Zusammenhang gebracht.
Natural light harvesting as well as optoelectronic and photovoltaic devices depend on efficient transport of energy following photoexcitation. Using common spectroscopic methods, however, it is challenging to discriminate one-exciton dynamics from multi-exciton interactions that arise when more than one excitation is present in the system. Here we introduce a coherent two-dimensional spectroscopic method that provides a signal only in case that the presence of one exciton influences the behavior of another one. Exemplarily, we monitor exciton diffusion by annihilation in a perylene bisimide-based J-aggregate. We determine quantitatively the exciton diffusion constant from exciton–exciton-interaction 2D spectra and reconstruct the annihilation-free dynamics for large pump powers. The latter enables for ultrafast spectroscopy at much higher intensities than conventionally possible and thus improves signal-to-noise ratios for multichromophore systems; the former recovers spatio–temporal dynamics for a broad range of phenomena in which exciton interactions are present.
We calculate differential Shannon entropies derived from time-dependent coordinate-space and momentum-space probability densities. This is performed for a prototype system of a coupled electron–nuclear motion. Two situations are considered, where one is a Born–Oppenheimer adiabatic dynamics, and the other is a diabatic motion involving strong non-adiabatic transitions. The information about coordinate- and momentum-space dynamics derived from the total and single-particle entropies is discussed and interpreted with the help of analytical models. From the entropies, we derive mutual information, which is a measure for the electron–nuclear correlation. In the adiabatic case, it is found that such correlations are manifested differently in coordinate- and momentum space. For the diabatic dynamics, we show that it is possible to decompose the entropies into state-specific contributions.
We study the influence of nodal structures in two-dimensional quantum mechanical densities on wave packet entanglement. This is motivated by our recent study [Entropy, 25, 970 (2023)], which showed that the mutual information derived from the momentum-space probability density of a coupled two-particle system exhibits an unusual time dependence, which is not encountered if the position-space density is employed in the calculation. In studying a model density, here, we identify cases where the mutual information increases with the number of nodes in the wave function and approaches a finite value, whereas in this limit, the linear correlation vanishes. The results of the analytical model are then applied to interpret the correlation measures for coupled electron-nuclear dynamics, which are treated by numerically solving the time-dependent Schrödinger equation.
In the present report, well-defined WO3 nanorods (NRs) and a rGO–WO\(_3\) composite were successfully synthesized using a one-pot hydrothermal method. The crystal phase, structural morphology, shape, and size of the as-synthesized samples were studied using X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements. The optical properties of the synthesized samples were investigated by Raman, ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. Raman spectroscopy and TEM results validate the formation of WO\(_3\) (NRs) on the rGO sheet. The value of the dielectric constant (ε′) of WO3 NRs and rGO–WO\(_3\) composite is decreased with an increase in frequency. At low frequency (2.5 to 3.5 Hz), the value of ε′ for the rGO–WO3 composite is greater than that of pure WO\(_3\) NRs. This could be due to the fact that the induced charges follow the ac signal. However, at higher frequency (3.4 to 6.0), the value of ε′ for the rGO–WO\(_3\) composite is less compared to that of the pure WO3 NRs. The overall decrease in the value of ε′ could be due to the occurrence of a polarization process at the interface of the rGO sheet and WO3 NRs. Enhanced interfacial polarization in the rGO–WO\(_3\) composite is observed, which may be attributed to the presence of polar functional groups on the rGO sheet. These functional groups trap charge carriers at the interface, resulting in an enhancement of the interfacial polarization. The value of the dielectric modulus is also calculated to further confirm this enhancement. The values of the ac conductivity of the WO\(_3\) NRs and rGO–WO\(_3\) composite were calculated as a function of the frequency. The greater value of the ac conductivity in the rGO–WO\(_3\) composite compared to that of the WO\(_3\) NRs confirms the restoration of the sp:\(^{++}\) network during the in situ synthesis of the rGO–WO\(_3\) composite, which is well supported by the results obtained by Raman spectroscopy.