## Institut für Physikalische und Theoretische Chemie

### Refine

#### Year of publication

#### Document Type

- Doctoral Thesis (109)
- Journal article (35)
- Preprint (17)

#### Keywords

- Exziton (13)
- Spektroskopie (12)
- Femtosekundenspektroskopie (11)
- Kohlenstoff-Nanoröhre (10)
- Raman-Spektroskopie (9)
- Ultrakurzzeitspektroskopie (9)
- Angeregter Zustand (8)
- Quantendynamik (8)
- Molekulardynamik (7)
- Photodissoziation (7)

#### Institute

- Institut für Physikalische und Theoretische Chemie (161)
- Physikalisches Institut (6)
- Institut für Anorganische Chemie (5)
- Institut für Organische Chemie (5)
- Graduate School of Science and Technology (2)
- Institut für Pharmazie und Lebensmittelchemie (2)
- Institut für Virologie und Immunbiologie (1)
- Theodor-Boveri-Institut für Biowissenschaften (1)

Excitation energy transport in DNA modelled by multi-chromophoric field-induced surface hopping
(2020)

Absorption of ultraviolet light is known as a major source of carcinogenic mutations of DNA. The underlying processes of excitation energy dissipation are yet not fully understood. In this work we provide a new and generally applicable route for studying the excitation energy transport in multi-chromophoric complexes at an atomistic level. The surface-hopping approach in the frame of the extended Frenkel exciton model combined with QM/MM techniques allowed us to simulate the photodynamics of the alternating (dAdT)10 : (dAdT)10 double-stranded DNA. In accordance with recent experiments, we find that the excited state decay is multiexponential, involving a long and a short component which are due to two distinct mechanisms: formation of long-lived delocalized excitonic and charge transfer states vs. ultrafast decaying localized states resembling those of the bare nucleobases. Our simulations explain all stages of the ultrafast photodynamics including initial photoexcitation, dynamical evolution out of the Franck-Condon region, excimer formation and nonradiative relaxation to the ground state.

Tetraiododiborane(4) (B\(_2\)I\(_4\)) is a Polymer based on sp\(^3\) Boron in the Solid State
(2020)

Herein we present the first solid‐state structures of tetraiododiborane(4) (B\(_2\)I\(_4\)), which was long believed to exist in all phases as discrete molecules with planar, tricoordinate boron atoms, like the lighter tetrahalodiboranes(4) B\(_2\)F\(_4\), B\(_2\)Cl\(_4\), and B\(_2\)Br\(_4\). Single‐crystal X‐ray diffraction, solid‐state NMR, and IR measurements indicate that B\(_2\)I\(_4\) in fact exists as two different polymeric forms in the solid state, both of which feature boron atoms in tetrahedral environments. DFT calculations are used to simulate the IR spectra of the solution and solid‐state structures, and these are compared with the experimental spectra.

Iodine oxides appear as reactive intermediates in atmospheric chemistry. Here, we investigate IO and HOI by mass‐selective threshold photoelectron spectroscopy (ms‐TPES), using synchrotron radiation. IO and HOI are generated by photolyzing iodine in the presence of ozone. For both molecules, accurate ionization energies are determined, 9.71±0.02 eV for IO and 9.79±0.02 eV for HOI. The strong spin‐spin interaction in the 3Σ− ground state of IO+ leads to an energy splitting into the Ω=0 and Ω=±1 sublevels. Upon ionization, the I−O bond shortens significantly in both molecules; thus, a vibrational progression, assigned to the I−O stretch, is apparent in both spectra.

Herein we report a broad series of new trinuclear supramolecular Ru(bda) macrocycles bearing different substituents at the axial or equatorial ligands which enabled investigation of substituent effects on the catalytic activities in chemical and photocatalytic water oxidation. Our detailed investigations revealed that the activities of these functionalized macrocycles in water oxidation are significantly affected by the position at which the substituents were introduced. Interestingly, this effect could not be explained based on the redox properties of the catalysts since these are not markedly influenced by the functionalization of the ligands. Instead, detailed investigations by X-ray crystal structure analysis and theoretical simulations showed that conformational changes imparted by the substituents are responsible for the variation of catalytic activities of the Ru macrocycles. For the first time, macrocyclic structure of this class of water oxidation catalysts is unequivocally confirmed and experimental indication for a hydrogen-bonded water network present in the cavity of the macrocycles is provided by crystal structure analysis. We ascribe the high catalytic efficiency of our Ru(bda) macrocycles to cooperative proton abstractions facilitated by such a network of preorganized water molecules in their cavity, which is reminiscent of catalytic activities of enzymes at active sites.

Rapid multiple-quantum three-dimensional fluorescence spectroscopy disentangles quantum pathways
(2019)

Coherent two-dimensional spectroscopy is a powerful tool for probing ultrafast quantum dynamics in complex systems. Several variants offer different types of information but typically require distinct beam geometries. Here we introduce population-based three-dimensional (3D) electronic spectroscopy and demonstrate the extraction of all fourth- and multiple sixth-order nonlinear signal contributions by employing 125-fold (1⨯5⨯5⨯5) phase cycling of a four-pulse sequence. Utilizing fluorescence detection and shot-to-shot pulse shaping in single-beam geometry, we obtain various 3D spectra of the dianion of TIPS-tetraazapentacene, a fluorophore with limited stability at ambient conditions. From this, we recover previously unknown characteristics of its electronic two-photon state. Rephasing and nonrephasing sixth-order contributions are measured without additional phasing that hampered previous attempts using noncollinear geometries. We systematically resolve all nonlinear signals from the same dataset that can be acquired in 8 min. The approach is generalizable to other incoherent observables such as external photoelectrons, photocurrents, or photoions.

We present a theoretical study on exciton–exciton annihilation (EEA) in a molecular dimer. This process is monitored using a fifth-order coherent two-dimensional (2D) spectroscopy as was recently proposed by Dostál et al. [Nat. Commun. 9, 2466 (2018)]. Using an electronic three-level system for each monomer, we analyze the different paths which contribute to the 2D spectrum. The spectrum is determined by two entangled relaxation processes, namely, the EEA and the direct relaxation of higher lying excited states. It is shown that the change of the spectrum as a function of a pulse delay can be linked directly to the presence of the EEA process.

For the rational design of new fluorophores, reliable predictions of fluorescence quantum yields from first principles would be of great help. However, efficient computational approaches for predicting transition rates usually assume that the vibrational structure is harmonic. While the harmonic approximation has been used successfully to predict vibrationally resolved spectra and radiative rates, its reliability for non-radiative rates is much more questionable. Since non-adiabatic transitions convert large amounts of electronic energy into vibrational energy, the highly excited final vibrational states deviate greatly from harmonic oscillator eigenfunctions. We employ a time-dependent formalism to compute radiative and non-radiative rates for transitions and study the dependence on model parameters. For several coumarin dyes we compare different adiabatic and vertical harmonic models (AS, ASF, AH, VG, VGF, VH), in order to dissect the
importance of displacements, frequency changes and Duschinsky rotations. In addition we analyze the effect of different broadening functions (Gaussian, Lorentzian or Voigt). Moreover, to assess the qualitative influence of anharmonicity on the internal conversion rate, we develop a simplified anharmonic model. We adress the reliability of these models considering the potential errors introduced by the harmonic approximation and the phenomenological width of the broadening function.

The multistate metadynamics for automatic exploration of conical intersection seams and systematic location of minimum energy crossing points in molecular systems and its implementation into the software package metaFALCON is presented. Based on a locally modified energy gap between two Born–Oppenheimer electronic states as a collective variable, multistate metadynamics trajectories are driven toward an intersection point starting from an arbitrary ground state geometry and are subsequently forced to explore the conical intersection seam landscape. For this purpose, an additional collective variable capable of distinguishing structures within the seam needs to be defined and an additional bias is introduced into the off-diagonal elements of an extended (multistate) electronic Hamiltonian. We demonstrate the performance of the algorithm on the examples of the 1,3-butadiene, benzene, and 9H-adenine molecules, where multiple minimum energy crossing points could be systematically located using the Wiener number or Cremer–Pople parameters as collective variables. Finally, with the example of 9H-adenine, we show that the multistate metadynamics potential can be used to obtain a global picture of a conical intersection seam. Our method can be straightforwardly connected with any ab initio or semiempirical electronic structure theory that provides energies and gradients of the respective electronic states and can serve for systematic elucidation of the role of conical intersections in the photophysics and photochemistry of complex molecular systems, thus complementing nonadiabatic dynamics simulations.

Comparison of moving and fixed basis sets for nonadiabatic quantum dynamics at conical intersections
(2020)

We assess the performance of two different types of basis sets for nonadiabatic quantum dynamics at conical intersections. The basis sets of both types are generated using Ehrenfest trajectories of nuclear coherent states. These trajectories can either serve as a moving (time-dependent) basis or be employed to sample a fixed (time-independent) basis. We demonstrate on the example of two-state two-dimensional and three-state five-dimensional models that both basis set types can yield highly accurate results for population transfer at intersections, as compared with reference quantum dynamics. The details of wave packet evolutions are discussed for the case of the two-dimensional model. The fixed basis is found to be superior to the moving one in reproducing nonlocal spreading and maintaining correct shape of the wave packet upon time evolution. Moreover, for the models considered, the fixed basis set outperforms the moving one in terms of computational efficiency.