Lehrstuhl für Tissue Engineering und Regenerative Medizin
Refine
Has Fulltext
- yes (163)
Is part of the Bibliography
- yes (163)
Year of publication
Document Type
- Journal article (112)
- Doctoral Thesis (51)
Keywords
- Tissue Engineering (25)
- tissue engineering (11)
- regenerative medicine (7)
- stem cells (6)
- in vitro (5)
- 3D tissue model (4)
- In-vitro-Kultur (4)
- extracellular matrix (4)
- gene expression (4)
- inflammation (4)
Institute
- Lehrstuhl für Tissue Engineering und Regenerative Medizin (163)
- Graduate School of Life Sciences (25)
- Theodor-Boveri-Institut für Biowissenschaften (22)
- Julius-von-Sachs-Institut für Biowissenschaften (8)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (6)
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen (6)
- Institut für Molekulare Infektionsbiologie (5)
- Institut für Organische Chemie (5)
- Institut für Virologie und Immunbiologie (5)
- Lehrstuhl für Orthopädie (5)
Sonstige beteiligte Institutionen
- Fraunhofer (1)
- Fraunhofer Institute Interfacial Engineering and Biotechnology (IGB) (1)
- Fraunhofer Institute for Integrierte Schaltungen (IIS) (1)
- IZKF (Interdisziplinäres Zentrum für Klinische Forschung), Universität Würzburg (1)
- Medizinische Universität Innsbruck (1)
- New York Blood Center (1)
- Queensland University of Technology (1)
Im experimentellen Ansatz sollte mithilfe der CRISPR-Cas9-Methode eine gerichtete ALK1-Rezeptor-Eliminierung in myoblastischen C2C12-Zellen durchgeführt werden. Nach erfolgreicher Klonierung der jeweiligen, für den Typ-I-Rezeptor ALK1-kodierenden, gRNA-Sequenzen in die Puro- und GFP-CRISPR-Plasmide gelang der mittels Lipofektion durchgeführte Transfer der vier klonierten Plasmide in die C2C12-Zellen. Parallel aufgetaut wurden C2C12*ALK2- sowie ALK3-Knockout-Zelllinien, welche zuvor durch die Masterandin L. Wiesmann, ebenfalls mithilfe der CRISPR-Cas9-Methode, induzierte Knockouts der jeweiligen Rezeptoren ALK2 sowie ALK3 enthielten. Anschließend erfolgte die Puromycin-Selektion der mit den Puro-Klonen transfizierten C2C12*ALK1-3, ALK1-4-, ALK2- sowie ALK3-KO-Zellpopulationen. Die Zellen der C2C12*ALK1-3-KO-Population überlebten die Selektion trotz erneuter Durchführung der Transfektion sowie Selektion nicht. Somit erfolgte die Kultivierung der verbliebenen Zellen der C2C12*ALK1 4-, C2C12*ALK2- sowie C2C12*ALK3-KO-Population. Anschließend galt es zu untersuchen, wie responsiv die einzelne KO-Zelle für verschiedene Liganden ist. Im Rahmen der Durchführung differenter, zellbasierter Versuche wie der qPCR, des Western Blots und des ALP-Assays wirkten verschiedene BMPs auf die KO-Populationen ein. Somit konnten die BMP-induzierten, nachfolgenden Ereignisse wie die mRNA-Expression, die SMAD-Phosphorylierung sowie die Induktion der ALP-Expression innerhalb der KO-Populationen genauer betrachtet werden.
Es ist allgemein bekannt, dass ALK1 sowohl bei der Angiogenese als auch bei der kardio-vaskulären Homöostase eine wichtige Rolle übernimmt. ALK1 ist vermutlich für die Gefäßneubildung in manchen Tumoren verantwortlich und auch die vaskuläre Erkrankung „Hereditäre hämorrhagische Teleangiektasie (HHT)“ steht im Zusammenhang mit einer Mutation des ALK1-Rezeptorgens. BMP9 beeinflusst als ALK1-bindender Ligand neben der Tumorentwicklung und der Angiogenese auch die osteogene Differenzierung mesenchymaler Stammzellen. Im Hinblick auf zukünftige Versuche sind daher weitere, noch aussagekräftigere Ergebnisse erstrebenswert, allerdings unter der Verwendung von ausschließlich homozygoten KO-Zelllinien. Weitere Erkenntnisse über die Rolle des ALK1-Rezeptors in BMP-vermittelter Signaltransduktion könnten für therapeutische Ansätze bei der Behandlung von vaskulären Erkrankungen und Tumorprogression sowie bei der Förderung der Knochenregeneration und -heilung hilfreich sein.
The impact of oral commensal and pathogenic bacteria on peri-implant mucosa is not well understood, despite the high prevalence of peri-implant infections. Hence, we investigated responses of the peri-implant mucosa to Streptococcus oralis or Aggregatibacter actinomycetemcomitans biofilms using a novel in vitro peri-implant mucosa-biofilm model. Our 3D model combined three components, organotypic oral mucosa, implant material, and oral biofilm, with structural assembly close to native situation. S. oralis induced a protective stress response in the peri-implant mucosa through upregulation of heat shock protein (HSP70) genes. Attenuated inflammatory response was indicated by reduced cytokine levels of interleukin-6 (IL-6), interleukin-8 (CXCL8), and monocyte chemoattractant protein-1 (CCL2). The inflammatory balance was preserved through increased levels of tumor necrosis factor-alpha (TNF-α). A. actinomycetemcomitans induced downregulation of genes important for cell survival and host inflammatory response. The reduced cytokine levels of chemokine ligand 1 (CXCL1), CXCL8, and CCL2 also indicated a diminished inflammatory response. The induced immune balance by S. oralis may support oral health, whereas the reduced inflammatory response to A. actinomycetemcomitans may provide colonisation advantage and facilitate later tissue invasion. The comprehensive characterisation of peri-implant mucosa-biofilm interactions using our 3D model can provide new knowledge to improve strategies for prevention and therapy of peri-implant disease.
Objectives
Glycemic control by medical treatment represents one therapeutic strategy for diabetic patients. The Na+-d-glucose cotransporter 1 (SGLT1) is currently of high interest in this context. SGLT1 is known to mediate glucose absorption and incretin secretion in the small intestine. Recently, inhibition of SGLT1 function was shown to improve postprandial hyperglycemia. In view of the lately demonstrated SGLT1 expression in pancreatic islets, we investigated if loss of SGLT1 affects islet morphology and function.
Methods
Effects associated with the loss of SGLT1 on pancreatic islet (cyto) morphology and function were investigated by analyzing islets of a SGLT1 knockout mouse model, that were fed a glucose-deficient, fat-enriched diet (SGLT1−/−-GDFE) to circumvent the glucose-galactose malabsorption syndrome. To distinguish diet- and Sglt1−/−-dependent effects, wildtype mice on either standard chow (WT-SC) or the glucose-free, fat-enriched diet (WT-GDFE) were used as controls. Feeding a glucose-deficient, fat-enriched diet further required the analysis of intestinal SGLT1 expression and function under diet-conditions.
Results
Consistent with literature, our data provide evidence that small intestinal SGLT1 mRNA expression and function is regulated by nutrition. In contrast, pancreatic SGLT1 mRNA levels were not affected by the applied diet, suggesting different regulatory mechanisms for SGLT1 in diverse tissues. Morphological changes such as increased islet sizes and cell numbers associated with changes in proliferation and apoptosis and alterations of the β- and α-cell population are specifically observed for pancreatic islets of SGLT1−/−-GDFE mice. Glucose stimulation revealed no insulin response in SGLT1−/−-GDFE mice while WT-GDFE mice displayed only a minor increase of blood insulin. Irregular glucagon responses were observed for both, SGLT1−/−-GDFE and WT-GDFE mice. Further, both animal groups showed a sustained release of GLP-1 compared to WT-SC controls.
Conclusion
Loss or impairment of SGLT1 results in abnormal pancreatic islet (cyto)morphology and disturbed islet function regarding the insulin or glucagon release capacity from β- or α-cells, respectively. Consequently, our findings propose a new, additional role for SGLT1 maintaining proper islet structure and function.
Patient-tailored therapy based on tumor drivers is promising for lung cancer treatment. For this, we combined in vitro tissue models with in silico analyses. Using individual cell lines with specific mutations, we demonstrate a generic and rapid stratification pipeline for targeted tumor therapy. We improve in vitro models of tissue conditions by a biological matrix-based three-dimensional (3D) tissue culture that allows in vitro drug testing: It correctly shows a strong drug response upon gefitinib (Gef) treatment in a cell line harboring an EGFR-activating mutation (HCC827), but no clear drug response upon treatment with the HSP90 inhibitor 17AAG in two cell lines with KRAS mutations (H441, A549). In contrast, 2D testing implies wrongly KRAS as a biomarker for HSP90 inhibitor treatment, although this fails in clinical studies. Signaling analysis by phospho-arrays showed similar effects of EGFR inhibition by Gef in HCC827 cells, under both 2D and 3D conditions. Western blot analysis confirmed that for 3D conditions, HSP90 inhibitor treatment implies different p53 regulation and decreased MET inhibition in HCC827 and H441 cells. Using in vitro data (western, phospho-kinase array, proliferation, and apoptosis), we generated cell line-specific in silico topologies and condition-specific (2D, 3D) simulations of signaling correctly mirroring in vitro treatment responses. Networks predict drug targets considering key interactions and individual cell line mutations using the Human Protein Reference Database and the COSMIC database. A signature of potential biomarkers and matching drugs improve stratification and treatment in KRAS-mutated tumors. In silico screening and dynamic simulation of drug actions resulted in individual therapeutic suggestions, that is, targeting HIF1A in H441 and LKB1 in A549 cells. In conclusion, our in vitro tumor tissue model combined with an in silico tool improves drug effect prediction and patient stratification. Our tool is used in our comprehensive cancer center and is made now publicly available for targeted therapy decisions.
In this report we describe a human pluripotent stem cell-derived vascular progenitor (MesoT) cell of the mesothelium lineage. MesoT cells are multipotent and generate smooth muscle cells, endothelial cells, and pericytes and self-assemble into vessel-like networks in vitro. MesoT cells transplanted into mechanically damaged neonatal mouse heart migrate into the injured tissue and contribute to nascent coronary vessels in the repair zone. When seeded onto decellularized vascular scaffolds, MesoT cells differentiate into the major vascular lineages and self-assemble into vasculature capable of supporting peripheral blood flow following transplantation. These findings demonstrate in vivo functionality and the potential utility of MesoT cells in vascular engineering applications.
Herstellung und Qualitätskontrolle einer vaskularisierten Trägerstruktur zur Blasenrekonstruktion
(2024)
Die regenerative Medizin gewinnt heutzutage immer mehr an Bedeutung. Der klinische Ersatz der Harnblase nach Tumoren oder bei Fehlbildungen stellt bis heute einen komplexen Eingriff mit zahlreichen Langzeitkomplikationen dar. Trotz etlicher Behandlungsmöglichkeiten können die aktuellen therapeutischen Maßnahmen nicht als langfristige Heilung angesehen werden. Meine Arbeit ist Teil einer präklinischen Großtierstudie zur Entwicklung eines neuartigen Blasenersatzes auf der Basis eines vaskularisierten Tissue-Engineering-Konstruktes. Mit der Herstellung eines vaskularisierten Augmentats (UroVaSc) wird ein Arzneimittel für neuartige Therapien (ATMP) für die Anwendung am Menschen entwickelt.
Unter Zuhilfenahme fortschrittlicher Verfahren aus dem Bereich des Tissue Engineerings wird ein Gewebe hergestellt, welches im Empfänger die beiden kritischen Punkte der Vernarbung und insbesondere bei jungen Empfängern die Problematik eines nicht mitwachsenden Gewebes reduzieren oder verhindern soll. Als Ausgangsmaterialien dienen ein Abschnitt porcinen Jejunums und eine porcine Hautbiopsie. In der klinischen Anwendung wird die Hautbiopsie dem Empfänger des Augmentats entnommen. Aus den beiden Ausgangsmaterialien werden als Zwischenprodukte dezellularisiertes Jejunum (BioVaSc) und aus der Hautbiopsie eine primäre, mikrovaskuläre Endothelzellkultur (mvEC) hergestellt. Die mvEC besiedeln die Gefäße der Trägerstruktur BioVaSc in einem Bioreaktorsystem und führen zum vaskularisierten Endprodukt, der UroVaSc.
Ziel der vorliegenden Arbeit war die Entwicklung eines dreidimensionalen, vaskularisierten Blasenaugmentats. Im Verlauf dieser Arbeit waren die Methoden der Isolation und Kultivierung der Zellen, die Rebesiedlung und Kultur des autologen Augmentats, als auch die Qualitätskontrolle unter den Richtlinien der Guten Herstellungspraxis zu etablieren.
Für die Isolierung der mvEC wurde ein Protokoll erarbeitet, mit dem sich die Zellen, trotz intraindividueller Unterschiede der Spendertiere, in ausreichender Zellzahl und Reinheit darstellen ließen. Des Weiteren wurde die endotheliale Rebesiedlung der Trägerstruktur erfolgreich durchgeführt und dies mit Hilfe zellbiologischer und immunhistologischer Methoden belegt. In der Risikobeurteilung des Herstellungsprozesses wurde die Überwachung des Inkubators als wichtigen Schritt zur Erhöhung der Produktqualität identifiziert, der in weiterführenden Arbeiten adressiert werden sollte. Auf Grundlage meiner Forschungsergebnisse und weiterer Forschungsarbeiten erfolgt derzeit die funktionale Testung des Endproduktes im Großtierversuch.
Mit der erfolgreichen Herstellung eines vaskularisierten Blasenaugmentats wird betroffenen Patienten eine neuartige Therapieoption eröffnet, welche die Aussicht auf eine Heilung schwerer Erkrankungen an der Blase ermöglicht.
Follistatin Effects in Migration, Vascularization, and Osteogenesis in vitro and Bone Repair in vivo
(2019)
The use of biomaterials and signaling molecules to induce bone formation is a promising approach in the field of bone tissue engineering. Follistatin (FST) is a glycoprotein able to bind irreversibly to activin A, a protein that has been reported to inhibit bone formation. We investigated the effect of FST in critical processes for bone repair, such as cell recruitment, osteogenesis and vascularization, and ultimately its use for bone tissue engineering. In vitro, FST promoted mesenchymal stem cell (MSC) and endothelial cell (EC) migration as well as essential steps in the formation and expansion of the vasculature such as EC tube-formation and sprouting. FST did not enhance osteogenic differentiation of MSCs, but increased committed osteoblast mineralization. In vivo, FST was loaded in an in situ gelling formulation made by alginate and recombinant collagen-based peptide microspheres and implanted in a rat calvarial defect model. Two FST variants (FST288 and FST315) with major differences in their affinity to cell-surface proteoglycans, which may influence their effect upon in vivo bone repair, were tested. In vitro, most of the loaded FST315 was released over 4 weeks, contrary to FST288, which was mostly retained in the biomaterial. However, none of the FST variants improved in vivo bone healing compared to control. These results demonstrate that FST enhances crucial processes needed for bone repair. Further studies need to investigate the optimal FST carrier for bone regeneration.
A highly regulated microenvironment is essential in maintaining normal functioning of the central nervous system (CNS). The existence of a biological barrier, termed as the blood-brain barrier (BBB), at the blood to brain interface effectively allows for selective passage of substances and pathogens into the brain (Kadry, Noorani et al. 2020). The BBB chiefly serves in protecting the brain from extrinsic toxin entry and pathogen invasions. The BBB is formed mainly by brain capillary endothelial cells (BCECs) which are responsible for excluding ∼ 100% of large-molecule neurotherapeutics and more than 98% of all small-molecule drugs from entry into the brain. Minimal BBB transport of major potential CNS drugs allows for attenuated effective treatments for majority of CNS disorders (Appelt-Menzel, Oerter et al. 2020). Animals are generally used as model systems to study neurotherapeutic delivery into the brain, however due to species based disparity, experimental animal models lead to several false positive or false negative drug efficacy predictions thereby being unable to fully predict effects in humans (Ruck, Bittner et al. 2015). An example being that over the last two decades, much of the studies involving animals lead to high failure rates in drug development with ~ 97% failure in cancers and ~ 99% failure for Alzheimer´s disease (Pound 2020). Widespead failures in clinical trials associated with neurological disorders have resulted in questions on whether existing preclinical animal models are genuinely reflective of the human condition (Bhalerao, Sivandzade et al. 2020). Apart from high failure rates in humans, the costs for animal testings is extremely high. According to the Organisation for Economic Co-operation and Development (OECD), responsible for determining animal testing guidelines and methodology for government, industry, and independent laboratories the average cost of a single two-generation reproductive animal toxicity study worldwide is 318,295 € and for Europe alone is ~ 285,842 € (Van Norman 2019). Due to these reasons two separate movements exist within the scientific world, one being to improve animal research and the other to promote new approach methodologies with the European government setting 2025 - 2035 as a deadline for gradually disposing the use of animals in pharmaceutical testing (Pound 2020).
The discovery of human induced pluripotent stem cell (hiPSC) technology in 2006 (Takahashi and Yamanaka 2006, Takahashi, Tanabe et al. 2007) revolutionized the field of drug discovery in-vitro. HiPSCs can be differentiated into various tissue types that mimic disease phenotypes, thereby offering the possibility to deliver humanized in-vitro test systems. With respect to the BBB, several strategies to differentiate hiPSCs to BCECs (iBCECs) are reported over the years (Appelt-Menzel, Oerter et al. 2020). However, iBCECs are said to possess an epithelial or undifferentiated phenotype causing incongruity in BBB lineage specifications (Lippmann,
7
Azarin et al. 2020). Therefore, in order to identify a reliable differentiation strategy in deriving iBCECs possessing hallmark BBB characteristics, which can be used for downstream applications, the work in this thesis compared two methods, namely the co-differentiation (CD) and the directed differentiation (DD). Briefly, CD mimics a brain like niche environment for iBCEC specification (Lippmann, Al-Ahmad et al. 2014), while DD focuses on induction of the mesoderm followed by iBCEC specification (Qian, Maguire et al. 2017). The results obtained verified that while iBCECs derived via CD, in comparison to human BCEC cell line hCMEC/D3 showed the presence of epithelial transcripts such as E-Cadherin (CDH1), and gene level downregulation of endothelial specific platelet endothelial cell adhesion molecule-1 (PECAM-1) and VE-cadherin (CDH5) but demonstrated higher barrier integrity. The CD strategy essentially presented iBCECs with a mean trans-endothelial electrical resistance (TEER) of ~ 2000 – 2500 Ω*cm2 and low permeability coefficients (PC) of < 0.50 μm/min for small molecule transport of sodium fluorescein (NaF) and characteristic BCEC tight junction (TJ) protein expression of claudin-5 and occludin. Additionally, iBCECs derived via CD did not form tubes in response to angiogenic stimuli. DD on the other hand resulted in iBCECs with similar down regulations in PECAM-1 and CDH5 gene expression. They were additionally characterized by lower barrier integrity, measured by mean TEER of only ~ 250 – 450 Ω*cm2 and high PC of > 5 μm/min in small molecule transport of NaF. Although iBCECs derived via DD formed tubes in response to angiogenic stimuli, they did not show positive protein expression of characteristic BCEC TJs such as claudin-5 and occludin. These results led to the hypothesis that maturity and lineage specification of iBCECs could be improved by incorporating in-vivo like characteristics in-vitro, such as direct co-culture with neurovascular unit (NVU) cell types via spheroid formation and by induction of shear stress and fluid flow. In comparison to standard iBCEC transwell mono-cultures, BBB spheroids showed enhanced transcript expression of PECAM-1 and reduced expression of epithelial markers such as CDH1 and claudin-6 (CLDN6). BBB spheroids showed classical BCEC-like ultrastructure that was identified by TJ particles on the protoplasmic face (P-face) and exoplasmic face (E-face) of the plasma membrane. TJ strands were organized as particles and particle-free grooves on the E-face, while on the P-face, partly beaded particles and partly continuous strands were identified. BBB spheroids also showed positive protein expression of claudin-5, VE-cadherin, PECAM-1, glucose transporter-1 (GLUT-1), P-glycoprotein (P-gp) and transferrin receptor-1 (Tfr-1). BBB spheroids demonstrated higher relative impedance percentages in comparison to spheroids without an iBCEC barrier. Barrier integrity assessments additionally corresponded with lower permeability to small molecule tracer NaF, with spheroids containing iBCECs showing higher relative fluorescence unit percentages (RFU%) of ~ 90% in apical compartments, compared to ~ 80% in spheroids without iBCECs. In summary, direct cellular contacts in the complex spheroid model resulted in enhanced maturation of iBCECs.
8
A bioreactor system was used to further assess the effect of shear stress. This system enabled inclusion of fluidic flow and shear stress conditions in addition to non-invasive barrier integrity measurements (Choi, Mathew et al. 2022). iBCECs were cultured for a total of seven days post differentiation (d17) within the bioreactor and barrier integrity was non-invasively monitored. Until d17 of long-term culture, TEER values of iBCECs steadily dropped from ~ 1800 Ω*cm2 ~ 400 Ω*cm2 under static conditions and from ~ 2500 Ω*cm2 to ~ 250 Ω*cm2 under dynamic conditions. Transcriptomic analyses, morphometric analyses and protein marker expression showed enhanced maturation of iBECs under long-term culture and dynamic flow. Importantly, on d10 claudin-5 was expressed mostly in the cytoplasm with only ~ 5% iBCECs showing continuous staining at the cell borders. With increase in culture duration, iBCECs at d17 of static culture showed ~ 18% of cells having continuous cell border expression, while dynamic conditions showed upto ~ 30% of cells with continuous cell-cell border expression patterns. Similarly, ~ 33% of cells showed cell-cell border expression of occludin on d10 with increases to ~ 55% under d17 static and up to ~ 65% under d17 dynamic conditions, thereby indicating iBCEC maturation.
In conclusion, the data presented within this thesis demonstrates the maturation of iBCECs in BBB spheroids, obtained via direct cellular contacts and by the application of flow and shear stress. Both established novel models need to be further validated for pharmaceutical drug applications together with in-vitro-in-vivo correlations in order to exploit their full potential.
There is a great need for valuable ex vivo models that allow for assessment of cartilage repair strategies to reduce the high number of animal experiments. In this paper we present three studies with our novel ex vivo osteochondral culture platform. It consists of two separated media compartments for cartilage and bone, which better represents the in vivo situation and enables supply of factors pecific to the different needs of bone and cartilage. We investigated whether separation of the cartilage and bone compartments and/or culture media results in the maintenance of viability, structural and functional properties of cartilage tissue. Next, we valuated for how long we can preserve cartilage matrix stability of osteochondral explants during long-term culture over 84 days. Finally, we determined the optimal defect size that does not show spontaneous self-healing in this culture system. It was demonstrated that separated compartments for cartilage and bone in combination with tissue-specific medium allow for long-term culture of osteochondral explants while maintaining cartilage viability, atrix tissue content, structure and mechanical properties for at least 56 days. Furthermore, we could create critical size cartilage defects of different sizes in the model. The osteochondral model represents a valuable preclinical ex vivo tool for studying clinically relevant cartilage therapies, such as cartilage biomaterials, for their regenerative potential, for evaluation of drug and cell therapies, or to study mechanisms of cartilage regeneration. It will undoubtedly reduce the number of animals needed for in vivotesting.
Purpose
Hypertrophic cartilage is an important characteristic of osteoarthritis and can often be found in patients suffering from osteoarthritis. Although the exact pathomechanism remains poorly understood, hypertrophic de-differentiation of chondrocytes also poses a major challenge in the cell-based repair of hyaline cartilage using mesenchymal stromal cells (MSCs). While different members of the transforming growth factor beta (TGF-β) family have been shown to promote chondrogenesis in MSCs, the transition into a hypertrophic phenotype remains a problem. To further examine this topic we compared the effects of the transcription growth and differentiation factor 5 (GDF-5) and the mutant R57A on in vitro chondrogenesis in MSCs.
Methods
Bone marrow-derived MSCs (BMSCs) were placed in pellet culture and in-cubated in chondrogenic differentiation medium containing R57A, GDF-5 and TGF-ß1 for 21 days. Chondrogenesis was examined histologically, immunohistochemically, through biochemical assays and by RT-qPCR regarding the expression of chondrogenic marker genes.
Results
Treatment of BMSCs with R57A led to a dose dependent induction of chondrogenesis in BMSCs. Biochemical assays also showed an elevated glycosaminoglycan (GAG) content and expression of chondrogenic marker genes in corresponding pellets. While treatment with R57A led to superior chondrogenic differentiation compared to treatment with the GDF-5 wild type and similar levels compared to incubation with TGF-ß1, levels of chondrogenic hypertrophy were lower after induction with R57A and the GDF-5 wild type.
Conclusions
R57A is a stronger inducer of chondrogenesis in BMSCs than the GDF-5 wild type while leading to lower levels of chondrogenic hypertrophy in comparison with TGF-ß1.