Comprehensive Cancer Center Mainfranken
Refine
Has Fulltext
- yes (114)
Is part of the Bibliography
- yes (114)
Year of publication
Document Type
- Journal article (112)
- Doctoral Thesis (2)
Keywords
- cancer (6)
- colorectal cancer (5)
- NFATc1 (4)
- multiple myeloma (4)
- MYC (3)
- NRF2 (3)
- apoptosis (3)
- autophagy (3)
- cancer genomics (3)
- head and neck cancer (3)
Institute
- Comprehensive Cancer Center Mainfranken (114)
- Theodor-Boveri-Institut für Biowissenschaften (37)
- Pathologisches Institut (31)
- Klinik und Poliklinik für Allgemein-, Viszeral-, Gefäß- und Kinderchirurgie (Chirurgische Klinik I) (21)
- Medizinische Klinik und Poliklinik I (20)
- Medizinische Klinik und Poliklinik II (17)
- Urologische Klinik und Poliklinik (11)
- Rudolf-Virchow-Zentrum (8)
- Klinik und Poliklinik für Mund-, Kiefer- und Plastische Gesichtschirurgie (7)
- Klinik und Poliklinik für Nuklearmedizin (6)
Sonstige beteiligte Institutionen
- Zentraleinheit Klinische Massenspektrometrie (3)
- IZKF Nachwuchsgruppe Geweberegeneration für muskuloskelettale Erkrankungen (1)
- Interdisciplinary Center for Clinical Research (1)
- Lehrstuhl für Regeneration Muskuloskelettaler Gewebe (1)
- Mildred Scheel Early Career Center (1)
- Muskuloskelettales Centrum Würzburg (MCW) (1)
EU-Project number / Contract (GA) number
- 633983 (3)
- 336045 (2)
- 232944 (1)
- 260791 (1)
- BWF/H/52228/2012/13.10.10-1/3.4,6 (1)
shRNA expression is an established technique to transiently or permanently deplete cells of a particular mRNA/protein. In functional analyses of oncogenic pathways it can thus be used as an alternative to pharmacologic inhibitors, or as a means to address otherwise undruggable targets. Here we describe and functionally validate a simple reiterative cloning system to generate concatenated multi-shRNA expression plasmids. The multi-shRNA expression cassette can eventually be subcloned into any suitably designed vector for the stable transfection of cells, here tested with derivatives of the Sleeping Beauty transposon vector for stable transfection of multiple myeloma cell lines at the lowest biosafety level. We finally test inducible versions of such multi-cassette knockdown vectors and show their efficacy for the induced concerted knockdown of all four components of the MEK/MAPK-module in the Ras/MAPK pathway. The described vector system(s) should be useful for functional knockdown analyses in a wide array of cell line models.
Background
A significant number of oncological patients are heavily burdened by psychosocial stress. Doctors recommending or referring their patients to psycho-oncologists in the course of routine consultations can positively influence psycho-oncological care. The aim of this study was to analyze the frequency and predictors of such recommendations and to examine the use of these services by patients.
Methods
4,020 cancer patients (mean age 58 years; 51% women) were evaluated in a multicenter, cross-sectional study in Germany. Data was gathered about doctors’ referral practices, patients’ utilization of psycho-oncological care services, and disease-related symptoms. The PHQ-9 depression scale and the GAD-7 anxiety scale were used to measure psychological burden. Descriptive data analysis was conducted on the basis of subgroup comparisons and multivariable analysis was done using binary logistical regression.
Results
21.9% of the respondents reported having been given a recommendation or referral for psycho-oncological care by a doctor within the course of their cancer diagnosis and treatment. This comprises 29.5% of the patients identified by screening as being psychologically burdened. Nearly half of the patients who received a recommendation or referral (49.8%) acted on it. Predictors for seeking out psycho-oncological care included: patient desire (OR = 2.0), previous experience with psycho-oncological care (OR = 1.59), and female gender (OR = 1.57). Multivariable analysis indicated that patients’ level of psychological burden (depression, anxiety) had no effect on whether doctors gave them a recommendation or referral.
Conclusions
Along with examining the degree to which patients are burdened (e.g. using screening instruments), determining whether or not patients would like to receive psycho-oncological care is an important aspect of improving referral practices and, by extension, will allow important progress in the field of psycho-oncological care to be made.
Understanding the genetic mechanisms underlying segregation of phenotypic variation through successive generations is important for understanding physiological changes and disease risk. Tracing the etiology of variation in gene expression enables identification of genetic interactions, and may uncover molecular mechanisms leading to the phenotypic expression of a trait, especially when utilizing model organisms that have well-defined genetic lineages. There are a plethora of studies that describe relationships between gene expression and genotype, however, the idea that global variations in gene expression are also controlled by genotype remains novel. Despite the identification of loci that control gene expression variation, the global understanding of how genome constitution affects trait variability is unknown. To study this question, we utilized Xiphophorus fish of different, but tractable genetic backgrounds (inbred, F1 interspecies hybrids, and backcross hybrid progeny), and measured each individual’s gene expression concurrent with the degrees of inter-individual expression variation. We found, (a) F1 interspecies hybrids exhibited less variability than inbred animals, indicting gene expression variation is not affected by the fraction of heterozygous loci within an individual genome, and (b), that mixing genotypes in backcross populations led to higher levels of gene expression variability, supporting the idea that expression variability is caused by heterogeneity of genotypes of cis or trans loci. In conclusion, heterogeneity of genotype, introduced by inheritance of different alleles, accounts for the largest effects on global phenotypical variability.
Dmrt1 is a highly conserved transcription factor, which is critically involved in regulation of gonad development of vertebrates. In medaka, a duplicate of dmrt1—acting as master sex-determining gene—has a tightly timely and spatially controlled gonadal expression pattern. In addition to transcriptional regulation, a sequence motif in the 3′ UTR (D3U-box) mediates transcript stability of dmrt1 mRNAs from medaka and other vertebrates. We show here that in medaka, two RNA-binding proteins with antagonizing properties target this D3U-box, promoting either RNA stabilization in germ cells or degradation in the soma. The D3U-box is also conserved in other germ-cell transcripts, making them responsive to the same RNA binding proteins. The evolutionary conservation of the D3U-box motif within dmrt1 genes of metazoans—together with preserved expression patterns of the targeting RNA binding proteins in subsets of germ cells—suggest that this new mechanism for controlling RNA stability is not restricted to fishes but might also apply to other vertebrates.
Blinatumomab is a first-in-class immunotherapy based on the bispecific T-cell engager (BiTE®) immune-oncology platform, which redirects CD3+ T cells to kill CD19+ target cells. The objective of this analysis was to describe the correlation between B- and T-cell kinetics and response to blinatumomab in patients with relapsed or refractory (r/r) non-Hodgkin lymphoma (NHL). The clinical efficacy of treatment with blinatumomab in patients with r/r NHL was recently investigated in a phase 1 dose-escalation and expansion trial (NCT00274742) wherein 76 patients received blinatumomab by continuous intravenous infusion at various doses (0.5–90 μg/m2/day). B-Cell depletion and expansion of CD3+, CD4+, and CD8+ T cells was analyzed in patients stratified per clinical response (complete response [CR], n = 16; partial response [PR], stable disease [SD], or progressive disease [PD], n = 54) for at least 4 weeks (additional 4 weeks after clinical benefit) from the date of administration of blinatumomab until dose-limiting toxicity or PD. B-cell depletion kinetics were faster in patients who had a CR than in patients who did not have a complete response (PR, SD, or PD). T-cell expansion (T-cell counts exceeding the baseline level on day 22) was more pronounced in patients with CR than in patients without CR. T-cell expansion in patients with CR correlated with increased T-cell counts of both CD4+ and CD8+ T cells compared with patients without CR. Patients with r/r NHL who achieved a CR had faster B-cell depletion and increased expansion of CD3+, CD4+, and CD8+ T cells than patients who did not achieve a CR.
Aims
Autophagy protects against the development of cardiac hypertrophy and failure. While aberrant Ca2+ handling promotes myocardial remodelling and contributes to contractile dysfunction, the role of autophagy in maintaining Ca2+ homeostasis remains elusive. Here, we examined whether Atg5 deficiency-mediated autophagy promotes early changes in subcellular Ca2+ handling in ventricular cardiomyocytes, and whether those alterations associate with compromised cardiac reserve capacity, which commonly precedes the onset of heart failure.
Methods and results
RT–qPCR and immunoblotting demonstrated reduced Atg5 gene and protein expression and decreased abundancy of autophagy markers in hypertrophied and failing human hearts. The function of ATG5 was examined using cardiomyocyte-specific Atg5-knockout mice (Atg5−/−). Before manifesting cardiac dysfunction, Atg5−/− mice showed compromised cardiac reserve in response to β-adrenergic stimulation. Consequently, effort intolerance and maximal oxygen consumption were reduced during treadmill-based exercise tolerance testing. Mechanistically, cellular imaging revealed that Atg5 deprivation did not alter spatial and functional organization of intracellular Ca2+ stores or affect Ca2+ cycling in response to slow pacing or upon acute isoprenaline administration. However, high-frequency stimulation exposed stunted amplitude of Ca2+ transients, augmented nucleoplasmic Ca2+ load, and increased CaMKII activity, especially in the nuclear region of hypertrophied Atg5−/− cardiomyocytes. These changes in Ca2+ cycling were recapitulated in hypertrophied human cardiomyocytes. Finally, ultrastructural analysis revealed accumulation of mitochondria with reduced volume and size distribution, meanwhile functional measurements showed impaired redox balance in Atg5−/− cardiomyocytes, implying energetic unsustainability due to overcompensation of single mitochondria, particularly under increased workload.
Conclusion
Loss of cardiac Atg5-dependent autophagy reduces mitochondrial abundance and causes subtle alterations in subcellular Ca2+ cycling upon increased workload in mice. Autophagy-related impairment of Ca2+ handling is progressively worsened by β-adrenergic signalling in ventricular cardiomyocytes, thereby leading to energetic exhaustion and compromised cardiac reserve.
Purpose
While [18F]-fluorodeoxyglucose ([18F]FDG) is the standard for positron emission tomography/computed tomography (PET/CT) imaging of oral squamous cell carcinoma (OSCC), diagnostic specificity is hampered by uptake in inflammatory cells such as neutrophils or macrophages. Recently, molecular imaging probes targeting fibroblast activation protein α (FAP), which is overexpressed in a variety of cancer-associated fibroblasts, have become available and might constitute a feasible alternative to FDG PET/CT.
Methods
Ten consecutive, treatment-naïve patients (8 males, 2 females; mean age, 62 ± 9 years) with biopsy-proven OSCC underwent both whole-body [18F]FDG and [68Ga]FAPI-04 (FAP-directed) PET/CT for primary staging prior to tumor resection and cervical lymph node dissection. Detection of the primary tumor, as well as the presence and number of lymph node and distant metastases was analysed. Intensity of tracer accumulation was assessed by means of maximum (SUVmax) and peak (SUVpeak) standardized uptake values. Histological work-up including immunohistochemical staining for FAP served as standard of reference.
Results
[18F]FDG and FAP-directed PET/CT detected all primary tumors with a SUVmax of 25.5 ± 13.2 (FDG) and 20.5 ± 6.4 (FAP-directed) and a SUVpeak of 16.1 ± 10.3 ([18F]FDG) and 13.8 ± 3.9 (FAP-directed), respectively. Regarding cervical lymph node metastases, FAP-directed PET/CT demonstrated comparable sensitivity (81.3% vs. 87.5%; P = 0.32) and specificity (93.3% vs. 81.3%; P = 0.16) to [18F]FDG PET/CT. FAP expression on the cell surface of cancer-associated fibroblasts in both primary lesions as well as lymph nodes metastases was confirmed in all samples.
Conclusion
FAP-directed PET/CT in OSCC seems feasible. Future research to investigate its potential to improve patient staging is highly warranted.
Importance
Squamous cell carcinoma (SCC) of the oral cavity is one of the most common tumor entities worldwide. Precise initial staging is necessary to determine a diagnosis, treatment, and prognosis.
Objective
To examine the diagnostic accuracy of preoperative 18-F fluorodeoxyglucose (FDG) positron emission tomographic/computed tomographic (PET/CT) imaging in detecting cervical lymph node metastases.
Design, Setting, and Participants
This prospective diagnostic study was performed at a single tertiary reference center between June 1, 2013, and January 31, 2016. Data were analyzed from April 7, 2018, through May 31, 2019. Observers of the FDG PET/CT imaging were blinded to patients’ tumor stage. A total of 150 treatment-naive patients with clinical suspicion of SCC of the oral cavity were enrolled.
Exposures
All patients underwent FDG PET/CT imaging before local tumor resection with selective or complete neck dissection.
Main Outcomes and Measures
The accuracy of FDG PET/CT in localizing primary tumor, lymph node, and distant metastases was tested. Histopathologic characteristics of the tissue samples served as the standard of reference.
Results
Of the 150 patients enrolled, 135 patients (74 [54.8%] men) with a median age of 63 years (range, 23-88 years) met the inclusion criteria (histopathologically confirmed primary SCC of the oral cavity/level-based histopathologic assessment of the resected lymph nodes). Thirty-six patients (26.7%) in the study cohort had neck metastases. Use of FDG PET/CT detected cervical lymph node metastasis with 83.3% sensitivity (95% CI, 71.2%-95.5%) and 84.8% specificity (95% CI, 77.8%-91.9%) and had a negative predictive value of 93.3% (95% CI, 88.2%-98.5%). The specificity was higher than for contrast-enhanced cervical CT imaging (67.0%; 95% CI, 57.4%-76.7%; P < .01) and cervical magnetic resonance imaging (62.6%; 95% CI, 52.7%-72.6%; P < .001). Ipsilateral lymph node metastasis in left- or right-sided primary tumor sites was detected with 78.6% sensitivity (95% CI, 63.4%-93.8%) and 83.1% specificity (95% CI, 75.1%-91.2%), and contralateral metastatic involvement was detected with 66.7% sensitivity (95% CI, 28.9%-100.0%) and 98.6% specificity (95% CI, 95.9%-100.0%). No distant metastases were observed.
Conclusions and Relevance
In this study, FDG PET/CT imaging had a high negative predictive value in detecting cervical lymph node metastasis in patients with newly diagnosed, treatment-naive SCC of the oral cavity. Routine clinical use of FDG PET/CT might lead to a substantial reduction of treatment-related morbidity in most patients.
We previously reported that t(14;18)-negative follicular lymphomas (FL) show a clear reduction of newly acquired N-glycosylation sites (NANGS) in immunoglobulin genes. We therefore aimed to investigate in-depth the occurrence of NANGS in a larger cohort of t(14;18)-positive and t(14;18)-negative FL, including early (I/II) and advanced (III/IV) stage treatment-naive and relapsed tumors. The clonotype was determined by using a next-generation sequencing approach in a series of 68 FL with fresh frozen material [36 t(14;18) positive and 32 t(14;18) negative]. The frequency of NANGS differed considerably between t(14;18)-positive and t(14;18)-negative FL stage III/IV, but no difference was observed among t(14;18)-positive and t(14;18)-negative FL stage I/II. The introduction of NANGS in all t(14;18)-negative clinical subgroups occurred significantly more often in the FR3 region. Moreover, t(14;18)-negative treatment-naive FL, specifically those with NANGS, showed a strong bias for IGHV4-34 usage compared with t(14;18)-positive treatment-naive cases with NANGS; IGHV4-34 usage was never recorded in relapsed FL. In conclusion, subgroups of t(14;18)-negative FL might use different mechanisms of B-cell receptor stimulation compared with the lectin-mediated binding described in t(14;18)-positive FL, including responsiveness to autoantigens as indicated by biased IGHV4-34 usage and strong NANGS enrichment in FR3.