150 Psychologie
Refine
Is part of the Bibliography
- yes (810)
Year of publication
Document Type
- Journal article (449)
- Doctoral Thesis (162)
- Book article / Book chapter (101)
- Conference Proceeding (58)
- Book (16)
- Review (11)
- Report (6)
- Master Thesis (3)
- Other (3)
- Preprint (1)
Keywords
- Psychologie (116)
- EEG (20)
- virtual reality (17)
- Aufmerksamkeit (15)
- anxiety (15)
- attention (15)
- Angst (13)
- emotion (13)
- Informationsverarbeitung (12)
- Kind (11)
Institute
- Institut für Psychologie (452)
- Institut für Psychologie (bis Sept. 2007) (277)
- Graduate School of Life Sciences (45)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (30)
- Institut Mensch - Computer - Medien (26)
- Fakultät für Humanwissenschaften (Philos., Psycho., Erziehungs- u. Gesell.-Wissensch.) (6)
- Klinik und Poliklinik für Kinder- und Jugendpsychiatrie, Psychosomatik und Psychotherapie (5)
- Institut für Informatik (4)
- Institut für Sonderpädagogik (4)
- Institut für Psychotherapie und Medizinische Psychologie (3)
Sonstige beteiligte Institutionen
Humans spontaneously blink several times a minute. These blinks are strongly modulated during various cognitive task. However, the precise function of blinking and the reason for their modulation has not been fully understood. In the present work, I investigated the function of spontaneous blinks through various perceptual and cognitive tasks. Previous research has revealed that blinks rates decrease during some tasks but increase during others. When trying to understand these seemingly contradictory results, I observed that blink reduction occurs when one engages with an external input. For instance, a decrease has been observed due to the onset of a stimulus, sensory input processing and attention towards sensory input. However, for activities that do not involve such an engagement, e.g. imagination, daydreaming or creativity, the blink rate has been shown to increase. To follow up on the proposed hypothesis, I distinguished tasks that involve the processing of an external stimulus and tasks that involve disengagement.
In the first part of the project, I explored blinking during stimulus engagement. If the probability of blinking is low when engaging with the stimulus, then one should find a reduction in blinks specifically during the time period of processing but not during sensory input per se. To this end, in study 1, I tested the influence of task-relevant information duration on blink timing and additionally manipulated the overall sensory input using a visual and an auditory temporal simultaneity judgement task. The results showed that blinks were suppressed longer for longer periods of relevant information or in other words, blinks occurred at the end of relevant information processing for both the visual and the auditory modality. Since relevance is mediated through top-down processes, I argue that the reduction in blinks is a top-down driven suppression. In studies 2 and 3, I again investigated stimulus processing, but in this case, processing was triggered internally and not based on specific changes in the external input. To this end, I used bistable stimuli, in which the actual physical stimulus remains constant but their perception switches between different interpretations. Studies on the involvement of attention in such bistable perceptual changes indicate that the sensory input is reprocessed before the perceptual switch. The results revealed a reduction in eye blink rates before the report of perceptual switches. Importantly, I was able to decipher that the decrease was not caused by the perceptual switch or the behavioral response but likely started before the internal switch. Additionally, periods between a blink and a switch were longer than interblink intervals, indicating that blinks were followed by a period of stable percept. To conclude, the first part of the project revealed that there is a top-down driven blink suppression during the processing of an external stimulus.
In the second part of the project, I extended the idea of blinks marking the disengagement from external processing and tested if blinking is associated with better performance during internally directed processes. Specifically, I investigated divergent thinking, an aspect of creativity, and the link between performance and blink rates as well as the effect of motor restriction. While I could show that motor restriction was the main factor influencing divergent thinking, the relationship between eye blink rates and creative output also depended on restriction. Results showed that higher blink rates were associated with better performance during free movement, but only between subjects. In other words, subjects who had overall higher blink rates scored better in the task, but when they were allowed to sit or walk freely. Within a single subject, trial with higher blink rates were not associated with better performance. Therefore, possibly, people who are able to disengage easily, as indicated by an overall high blink rate, perform better in divergent thinking tasks. However, the link between blink rate and internal tasks is not clear at this point. Indeed, a more complex measurement of blink behavior might be necessary to understand the relationship.
In the final part of the project, I aimed to further understand the function of blinks through their neural correlates. I extracted the blink-related neural activity in the primary visual cortex (V1) of existing recordings of three rhesus monkeys during different sensory processing states. I analyzed spike related multi-unit responses, frequency dependent power changes, local field potentials and laminar distribution of activity while the animal watched a movie compared to when it was shown a blank screen. The results showed a difference in blink-related neural activity dependent on the processing state. This difference suggests a state dependent function of blinks.
Taken altogether, the work presented in this thesis suggests that eye blinks have an important function during cognitive and perceptual processes. Blinks seem to facilitate a disengagement from the external world and are therefore suppressed during intended processing of external stimuli.
Previous EEG research only investigated one stage ultimatum games (UGs). We investigated the influence of a second bargaining stage in an UG concerning behavioral responses, electro-cortical correlates and their moderations by the traits altruism, anger, anxiety, and greed in 92 participants. We found that an additional stage led to more rejection in the 2-stage UG (2SUG) and that increasing offers in the second stage compared to the first stage led to more acceptance. The FRN during a trial was linked to expectance evaluation concerning the fairness of the offers, while midfrontal theta was a marker for the needed cognitive control to overcome the respective default behavioral pattern. The FRN responses to unfair offers were more negative for either low or high altruism in the UG, while high trait anxiety led to more negative FRN responses in the first stage of 2SUG, indicating higher sensitivity to unfairness. Accordingly, the mean FRN response, representing the trait-like general electrocortical reactivity to unfairness, predicted rejection in the first stage of 2SUG. Additionally, we found that high trait anger led to more rejections for unfair offer in 2SUG in general, while trait altruism led to more rejection of unimproving unfair offers in the second stage of 2SUG. In contrast, trait anxiety led to more acceptance in the second stage of 2SUG, while trait greed even led to more acceptance if the offer was worse than in the stage before. These findings suggest, that 2SUG creates a trait activation situation compared to the UG.
In this article, we explain and demonstrate how to model norm scores with the cNORM package in R. This package is designed specifically to determine norm scores when the latent ability to be measured covaries with age or other explanatory variables such as grade level. The mathematical method used in this package draws on polynomial regression to model a three-dimensional hyperplane that smoothly and continuously captures the relation between raw scores, norm scores and the explanatory variable. By doing so, it overcomes the typical problems of classical norming methods, such as overly large age intervals, missing norm scores, large amounts of sampling error in the subsamples or huge requirements with regard to the sample size. After a brief introduction to the mathematics of the model, we describe the individual methods of the package. We close the article with a practical example using data from a real reading comprehension test.
Anxiety is characterized by anxious anticipation and heightened vigilance to uncertain threat. However, if threat is not reliably indicated by a specific cue, the context in which threat was previously experienced becomes its best predictor, leading to anxiety. A suitable means to induce anxiety experimentally is context conditioning: In one context (CTX+), an unpredictable aversive stimulus (US) is repeatedly presented, in contrast to a second context (CTX−), in which no US is ever presented. In this EEG study, we investigated attentional mechanisms during acquisition and extinction learning in 38 participants, who underwent a context conditioning protocol. Flickering video stimuli (32 s clips depicting virtual offices representing CTX+/−) were used to evoke steady‐state visual evoked potentials (ssVEPs) as an index of visuocortical engagement with the contexts. Analyses of the electrocortical responses suggest a successful induction of the ssVEP signal by video presentation in flicker mode. Furthermore, we found clear indices of context conditioning and extinction learning on a subjective level, while cortical processing of the CTX+ was unexpectedly reduced during video presentation. The differences between CTX+ and CTX− diminished during extinction learning. Together, these results indicate that the dynamic sensory input of the video presentation leads to disruptions in the ssVEP signal, which is greater for motivationally significant, threatening contexts.
The effect of inherently threatening contexts on visuocortical engagement to conditioned threat
(2023)
Fear and anxiety are crucial for adaptive responding in life‐threatening situations. Whereas fear is a phasic response to an acute threat accompanied by selective attention, anxiety is characterized by a sustained feeling of apprehension and hypervigilance during situations of potential threat. In the current literature, fear and anxiety are usually considered mutually exclusive, with partially separated neural underpinnings. However, there is accumulating evidence that challenges this distinction between fear and anxiety, and simultaneous activation of fear and anxiety networks has been reported. Therefore, the current study experimentally tested potential interactions between fear and anxiety. Fifty‐two healthy participants completed a differential fear conditioning paradigm followed by a test phase in which the conditioned stimuli were presented in front of threatening or neutral contextual images. To capture defense system activation, we recorded subjective (threat, US‐expectancy), physiological (skin conductance, heart rate) and visuocortical (steady‐state visual evoked potentials) responses to the conditioned stimuli as a function of contextual threat. Results demonstrated successful fear conditioning in all measures. In addition, threat and US‐expectancy ratings, cardiac deceleration, and visuocortical activity were enhanced for fear cues presented in threatening compared with neutral contexts. These results are in line with an additive or interactive rather than an exclusive model of fear and anxiety, indicating facilitated defensive behavior to imminent danger in situations of potential threat.
When trying to conceal one's knowledge, various ocular changes occur. However, which cognitive mechanisms drive these changes? Do orienting or inhibition—two processes previously associated with autonomic changes—play a role? To answer this question, we used a Concealed Information Test (CIT) in which participants were either motivated to conceal (orienting + inhibition) or reveal (orienting only) their knowledge. While pupil size increased in both motivational conditions, the fixation and blink CIT effects were confined to the conceal condition. These results were mirrored in autonomic changes, with skin conductance increasing in both conditions while heart rate decreased solely under motivation to conceal. Thus, different cognitive mechanisms seem to drive ocular responses. Pupil size appears to be linked to the orienting of attention (akin to skin conductance changes), while fixations and blinks rather seem to reflect arousal inhibition (comparable to heart rate changes). This knowledge strengthens CIT theory and illuminates the relationship between ocular and autonomic activity.
Objective
Global challenges such as climate change or the COVID‐19 pandemic have drawn public attention to conspiracy theories and citizens' non‐compliance to science‐based behavioral guidelines. We focus on individuals' worldviews about how one can and should construct reality (epistemic beliefs) to explain the endorsement of conspiracy theories and behavior during the COVID‐19 pandemic and propose the Dark Factor of Personality (D) as an antecedent of post‐truth epistemic beliefs.
Method and Results
This model is tested in four pre‐registered studies. In Study 1 (N = 321), we found first evidence for a positive association between D and post‐truth epistemic beliefs (Faith in Intuition for Facts, Need for Evidence, Truth is Political). In Study 2 (N = 453), we tested the model proper by further showing that post‐truth epistemic beliefs predict the endorsement of COVID‐19 conspiracies and disregarding COVID‐19 behavioral guidelines. Study 3 (N = 923) largely replicated these results at a later stage of the pandemic. Finally, in Study 4 (N = 513), we replicated the results in a German sample, corroborating their cross‐cultural validity. Interactions with political orientation were observed.
Conclusion
Our research highlights that epistemic beliefs need to be taken into account when addressing major challenges to humankind.
How do people estimate the income that is needed to be rich? Two correlative survey studies (Study 1 and 2, N = 568) and one registered experimental study (Study 3, N = 500) examined the cognitive mechanisms that are used to derive an answer to this question. We tested whether individuals use their personal income (PI) as a self‐generated anchor to derive an estimate of the income needed to be rich (= income wealth threshold estimation, IWTE). On a bivariate level, we found the expected positive relationship between one's PI and IWTE and, in line with previous findings, we found that people do not consider themselves rich. Furthermore, we predicted that individuals additionally use information about their social status within their social circles to make an IWTE. The findings from study 2 support this notion and show that only self‐reported high‐income individuals show different IWTEs depending on relative social status: Individuals in this group who self‐reported a high status produced higher IWTEs than individuals who self‐reported low status. The registered experimental study could not replicate this pattern robustly, although the results trended non‐significantly in the same direction. Together, the findings revealed that the income of individuals as well as the social environment are used as sources of information to make IWTE judgements, although they are likely not the only important predictors.
Depressive disorders represent one of the main sources for the loss of healthy years of life. One of the reasons for this circumstance is the recurrent course of these disorders, which can be interrupted by current therapeutic approaches, especially in the shortterm, but seem to be maintained at least in part in the long-term. Subsequently, on one hand, this thesis deals with methodological measurement issues in the longitudinal prediction of depressive courses. On the other hand, it addresses two currently discussed neuroscience-based treatment approaches, which are investigated experimentally in a basic-psychological manner and reviewed in the light of their potential to translate results to the application in patient care. These two approaches each address potential mechanisms that may negatively impact long-term disease trajectories: First, stable endophenotypes for vulnerability factors that could regain control over the organism and reactivate maladaptive experiences, or behaviors with increasing temporal distance from therapeutic methods are focused on. In the studies presented, these were influenced by a recently rediscovered method of neuromodulation (transcranial low-intensity focused ultrasound) which is discussed in light of its unique capability to address even deepest, subcortical regions at a high spatial resolution. Lastly, as a second approach, an experimental design for the use of reconsolidation interference is presented, which could provide a first insight into the applicability of corresponding protocols in the field of depressive disorders and thus contribute to the modification, instead of inhibition, of already mentioned endophenotypes. In sum, methodological considerations for monitoring and predicting long-term courses of depression are deducted before two approaches are discussed that could potentially exert positive influences on the recurrent nature of depressive symptoms on their own, in combination with each other, or as augmentation for existing therapeutic procedures.
Social contact is an integral part of daily life. Its health-enhancing effects include reduced negative affective experiences of fear and anxiety, a phenomenon called social buffering. This dissertation studied different forms of social contact and their anxiety-buffering effects with diverse methodologies.
The laboratory-based first study investigated minimal social contact in the context of pain relief learning. Results showed that the observed decreased autonomic and increased subjective fear responses following pain relief learning were independent of social influence. The minimalistic and controlled social setting may have prevented social buffering. Study 2 targeted social buffering in daily life using Ecological Momentary Assessment. We repeatedly assessed individuals’ state anxiety, related cardiovascular responses, and aspects of social interactions with smartphones and portable sensors on five days. Analyses of over 1,500 social contacts revealed gender-specific effects, e.g., heart rate-reducing effects of familiarity in women, but not men. Study 3 examined anxiety, loneliness, and related social factors in the absence of social contact due to social distancing. We constructed and validated a scale measuring state and trait loneliness and isolation, and analysed its link to mental health. Results include a social buffering-like relation of lower anxiety with more trait sociability and sense of belonging.
In sum, the studies showed no fear reduction by minimal social contact, but buffering effects relating to social and personal factors in more complex social situations. Anxiety responses during daily social contacts were lower with more familiar or opposite-gender interaction partners. During limited social contact, lower anxiety related to inter-individual differences in sociability, social belonging, and loneliness. By taking research from lab to life, this dissertation underlined the diverse nature of social contact and its relevance to mental health.