14.60.Pq Neutrino mass and mixing (see also 12.15.Ff Quark and lepton masses and mixing)
Refine
Has Fulltext
- yes (7)
Is part of the Bibliography
- yes (7)
Document Type
- Doctoral Thesis (5)
- Journal article (2)
Keywords
- Neutrino (4)
- Supersymmetrie (3)
- Elementarteilchenphysik (2)
- Supersymmetry (2)
- Beschleunigerphysik (1)
- Collider physics (1)
- Dark Matter (1)
- Dunkle Materie (1)
- EMMA (1)
- Effective Field Theory (1)
Institute
The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He-6 and Ne-18, also stored in a ring. The far detector is also the MEMPHYS detector in the Frejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive.
The origin of fermion mass hierarchies and mixings is one of the unresolved and most difficult problems in high-energy physics. One possibility to address the flavour problems is by extending the standard model to include a family symmetry. In the recent years it has become very popular to use non-Abelian discrete flavour symmetries because of their power in the prediction of the large leptonic mixing angles relevant for neutrino oscillation experiments. Here we give an introduction to the flavour problem and to discrete groups that have been used to attempt a solution for it. We review the current status of models in light of the recent measurement of the reactor angle, and we consider different model-building directions taken. The use of the flavons or multi-Higgs scalars in model building is discussed as well as the direct versus indirect approaches. We also focus on the possibility of experimentally distinguishing flavour symmetry models by means of mixing sum rules and mass sum rules. In fact, we illustrate in this review the complete path from mathematics, via model building, to experiments, so that any reader interested in starting work in the field could use this text as a starting point in order to obtain a broad overview of the different subject areas.
Testing Models with Higher Dimensional Effective Interactions at the LHC and Dark Matter Experiments
(2013)
Dark matter and non-zero neutrino masses are possible hints for new physics beyond the Standard Model of particle physics. Such potential consequences of new physics can be described by effective field theories in a model independent way. It is possible that the dominant contribution to low-energy effects of new physics is generated by operators of dimension d>5, e.g., due to an additional symmetry. Since these are more suppressed than the usually discussed lower dimensional operators, they can lead to extremly weak interactions even if new physics appears at comparatively low scales. Thus neutrino mass models can be connected to TeV scale physics, for instance. The possible existence of TeV scale particles is interesting, since they can be potentially observed at collider experiments, such as the Large Hadron Collider. Hence, we first recapitulate the generation of neutrino masses by higher dimensional effective operators in a supersymmetric framework. In addition, we discuss processes that can be used to test these models at the Large Hadron Collider. The introduction of new particles can affect the running of gauge couplings. Hence, we study the compatibilty of these models with Grand Unified Theories. The required extension of these models can imply the existence of new heavy quarks, which requires the consideration of cosmological constraints. Finally, higher dimensional effective operators can not only generate small neutrino masses. They also can be used to discuss the interactions relevant for dark matter detection experiments. Thus we apply the methods established for the study of neutrino mass models to the systematic discussion of higher dimensional effective operators generating dark matter interactions.
In dieser Arbeit untersuchen wir die Produktion von Neutrinos in astrophysikalischen Quellen. Bei der Beschreibung der Wechselwirkung betrachten wir resonante, direkte und Multipion-Produktion. Zusätzlich berücksichtigen wir die Produktion von Neutronen und positiv geladenen Kaonen. Wir beachten explizit die Energieverluste der Sekundärteilchen - Pionen, Myonen und Kaonen - auf Grund von Synchrotronstrahlung derselben und adiabatischer Expansion. In Bezug auf den Neutrinofluss berücksichtigen wir Flavor-Mischungen der Neutrinos auf dem Weg zum Beobachter. Zunächst führen wir eine Analyse basierend auf einem generischen Quellmodell durch, in der wir den Einfluss von Magnetfeld und Größe der Quelle auf die Neutrinospektren und das Verhältnis der verschiedenen Neutrino-Flavor untersuchen. Es stellt sich heraus, dass man im Rahmen dieses generischen Modells verschiedene Regionen im Parameterraum anhand des Flavor-Verhältnisses, das für hohe Magnetfelder von dem zumeist angenommenen Verhältnis (nu_e:nu_mu:nu_tau)=(1:2:0) abweicht, klassifizieren kann. In einer zweiten Analyse bestimmen wir die erwarteten Neutrinospektren von Gammablitzen im Rahmen des Feuerball-Modells aus beobachteten Photonspektren. Es zeigt sich, dass auf Grund grober Abschätzungen in der Literatur, der Neutrinofluss zumeist um etwa eine Größenordnung überschätzt wird. Deshalb berechnen wir den erwarteten Neutrinofluss der Gammablitze neu, die während der 40-Leinen-Konfiguration des IceCube-Detektors gemessen wurden, und folgern, dass entgegen der Behauptung der IceCube-Kollaboration, das Feuerball-Modell noch nicht ausgeschlossen ist. Des Weiteren quantifizieren wir systematische und astrophysikalische Unsicherheiten in dem vorhergesagten Neutrinofluss.
During the last decades the standard model of particle physics has evolved to one of the most precise theories in physics, describing the properties and interactions of fundamental particles in various experiments with a high accuracy. However it lacks on some shortcomings from experimental as well as from theoretical point of view: There is no approved mechanism for the generation of masses of the fundamental particles, in particular also not for the light, but massive neutrinos. In addition the standard model does not provide an explanation for the observance of dark matter in the universe. Moreover the gauge couplings of the three forces in the standard model do not unify, implying that a fundamental theory combining all forces can not be formulated. Within this thesis we address supersymmetric models as answers to these various questions, but instead of focusing on the most simple supersymmetrization of the standard model, we consider basic extensions, namely the next-to-minimal supersymmetric standard model (NMSSM), which contains an additional singlet field, and R-parity violating models. R-parity is a discrete symmetry introduced to guarantee the stability of the proton. Using lepton number violating terms in the context of bilinear R-parity violation and the munuSSM we are able to explain neutrino physics intrinsically supersymmetric, since those terms induce a mixing between the neutralinos and the neutrinos. Since 2009 the Large Hadron Collider (LHC) at CERN explores the new energy regime of Tera-electronvolt, allowing the production of potentially existing heavy particles by the collision of protons. Thus the near future might provide answers to the open questions of mass generation in the standard model and show hints towards physics beyond the standard model. Therefore this thesis works out the phenomenology of the supersymmetric models under consideration and tries to point out differences to the well-known features of the simplest supersymmetric realization of the standard model. In case of the R-parity violating models the decays of the light neutralinos can result in displaced vertices. In combination with a light singlet state these displaced vertices might offer a rich phenomenology like non-standard Higgs decays into a pair of singlinos decaying with displaced vertices. Within this thesis we present some calculations at next order of perturbation theory, since one-loop corrections provide possibly large contributions to the tree-level masses and decay widths. We are using an on-shell renormalization scheme to calculate the masses of neutralinos and charginos including the neutrinos and leptons in case of the R-parity violating models at one-loop level. The discussion shows the similarities and differences to existing calculations in another renormalization scheme, namely the DRbar scheme. Moreover we consider two-body decays of the form chi_j^0 -> chi_l^\pm W^\mp involving a heavy gauge boson in the final state at one-loop level. Corrections are found to be large in case of small or vanishing tree-level decay widths and also for the R-parity violating decay of the lightest neutralino chi_1^0 -> l^\pm W^\mp. An interesting feature of the models based on bilinear R-parity violation is the correlation between the branching ratios of the lightest neutralino decays and the neutrino mixing angles. We discuss these relations at tree-level and for two-body decays chi_1^0 -> l^\pm W^\mp also at one-loop level, since only the full one-loop corrections result in the tree-level expected behavior. The appendix describes the two programs MaCoR and CNNDecays being developed for the analysis carried out in this thesis. MaCoR allows for the calculation of mass matrices and couplings in the models under consideration and CNNDecays is used for the one-loop calculations of neutralino and chargino mass matrices and the two-body decay widths.
We consider the prospects for a neutrino factory measuring mixing angles, the CP violating phase and mass-squared differences by detecting wrong-charge muons arising from the chain $\mu^+\to\nu_e\to\nu_\mu\to\mu^-$ and the right-charge muons coming from the chain $\mu^+\to\bar{\nu}_\mu\to\bar{\nu}_\mu\to\mu^+$ (similar to $\mu^-$ chains), where $\nu_e\to\nu_\mu$ and $\bar{\nu}_\mu\to\bar{\nu}_\mu$ are neutrino oscillation channels through a long baseline. First, we study physics with near detectors and consider the treatment of systematic errors including cross section errors, flux errors, and background uncertainties. We illustrate for which measurements near detectors are required, discuss how many are needed, and what the role of the flux monitoring is. We demonstrate that near detectors are mandatory for the leading atmospheric parameter measurements if the neutrino factory has only one baseline, whereas systematic errors partially cancel if the neutrino factory complex includes the magic baseline. Second, we perform the baseline and energy optimization of the neutrino factory including the latest simulation results from the magnetized iron neutrino detector (MIND). We also consider the impact of $\tau$ decays, generated by appearance channels $\nu_\mu \rightarrow \nu_\tau$ and $\nu_e \rightarrow \nu_\tau$, on the discovery reaches of the mass orderings, the leptonic CP violation, and the non-zero $\theta_{13}$, which we find to be negligible for the considered detector. Third, we make a comparison of a high energy neutrino factory to a low energy neutrino factory and find that they are just two versions of the same experiment optimized for different regions of the parameter space. In addition, we briefly comment on whether it is useful to build the bi-magic baseline at the low energy neutrino factory. Finally, the effects of one additional massive sterile neutrino are discussed in the context of a combined short and long baseline setup. It is found that near detectors can provide the required sensitivity at the LSND-motivated $\Delta m_{41}^2$-range, while some sensitivity can also be obtained in the region of the atmospheric mass splitting introduced by the sterile neutrino from the long baselines.
In this work, we studied in great detail how the unknown parameters of the SUSY seesaw model can be determined from measurements of observables at or below collider energies, namely rare flavor violating decays of leptons, slepton pair production processes at linear colliders and slepton mass differences. This is a challenging task as there is an intricate dependence of the observables on the unknown seesaw, light neutrino and mSUGRA parameters. In order to separate these different influences, we first considered two classes of seesaw models, namely quasi-degenerate and strongly hierarchical right-handed neutrinos. As a generalisation, we presented a method that can be used to reconstruct the high energy seesaw parameters, among them the heavy right-handed neutrino masses, from low energy observables alone.