32.60.+i Zeeman and Stark effects
Refine
Has Fulltext
- yes (1)
Is part of the Bibliography
- yes (1)
Year of publication
- 2017 (1)
Document Type
- Doctoral Thesis (1)
Language
- English (1)
Keywords
- Feldstärkemessung (1)
- Gitterbaufehler (1)
- ODMR-Spektroskopie (1)
- Quantensensorik (1)
- Silicium Fehlstelle (1)
- Siliciumcarbid (1)
- Siliciumvakanz (1)
- pulsed ODMR (1)
- quantum metrology (1)
- quantum sensing (1)
Institute
In the present work, the energetic structure and coherence properties of the silicon vacancy point defect in the technologically important material silicon carbide are extensively studied by the optically detected magnetic resonance (ODMR) technique in order to verify its high potential for various quantum applications. In the spin vacancy, unique attributes are arising from the C3v symmetry and the spin-3/2 state, which are not fully described by the standard Hamiltonian of the uniaxial model. Therefore, an advanced Hamiltonian, describing well the appearing phenomena is established and the relevant parameters are experimentally determined. Utilizing these new accomplishments, several quantum metrology techniques are proposed.
First, a vector magnetometry scheme, utilizing the appearance of four ODMR lines, allows for simultaneous detection of the magnetic field strength and the tilting angle of the magnetic field from the symmetry axis of the crystal.
The second magnetometry protocol utilizes the appearance of energetic level anticrossings (LAC) in the ground state (GS) energy levels. Relying only on the change in photoluminescence in the vicinity of this GSLACs, this all-optical method does not require any radio waves and hence provides a much easier operation with less error sources as for the common magnetometry schemes utilizing quantum points.
A similar all-optical method is applied for temperature sensing, utilizing the thermal shift of the zero field splitting and consequently the anticrossing in the excited state (ES). Since the GSLACs show no dependence on temperature, the all-optical magnetometry and thermometry (utilizing the ESLACs) can be conducted subsequently on the same defect.
In order to quantify the achievable sensitivity of quantum metrology, as well as to prove the potential of the Si-vacancy in SiC for quantum processing, the coherence properties are investigated by the pulsed ODMR technique. The spin-lattice relaxation time T1 and the spin-spin relaxation time T2 are thoroughly analyzed for their dependence on the external magnetic field and temperature.
For actual sensing implementations, it is crucial to obtain the best signal-to-noise ratio without loss in coherence time. Therefore, the irradiation process, by which the defects are created in the crystal, plays a decisive role in the device performance. In the present work, samples irradiated with electrons or neutrons with different fluences and energies, producing different defect densities, are analyzed in regard to their T1 and T2 times at room temperature.
Last but not least, a scheme to substantially prolong the T2 coherence time by locking the spin polarization with the dynamic decoupling Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence is applied.