42.60.Da Resonators, cavities, amplifiers, arrays, and rings
Refine
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Document Type
- Doctoral Thesis (3)
Keywords
- Photonische Kristalle (2)
- Photonischer Kristall (2)
- Abstimmbare Laser (1)
- Abstimmbarer Laser (1)
- DFB-Laser (1)
- Dispersion (1)
- Halbleiterlaser (1)
- Indiumphosphid (1)
- Koppler (1)
- Laser (1)
Institute
Im Rahmen dieser Arbeit wurden optische Wellenleiter und Filter in zweidimensionalen photonischen Kristallen auf Indiumphosphid-Basis hergestellt, numerisch modelliert sowie experimentell im für die optische Nachrichtentechnik wichtigen Wellenlängenbereich um 1,55 µm untersucht. Photonische Kristalle weisen eine periodische Variation des Brechungsindex auf. Durch das gezielte Einbringen von Defekten in die periodische Struktur ist eine Manipulation der photonischen Zustandsdichte und somit der Lichtausbreitung möglich. Grundbaustein der durchgeführten Untersuchungen ist der lineare Defektwellenleiter in einem triangulären Gitter aus Luftlöchern in einer Halbleitermatrix, der durch das Auslassen von einer oder mehreren Lochreihen entsteht. Die Wellenführung in vertikaler Richtung wird durch eine Halbleiterheterostruktur mit einer Wellenleiterkernschicht aus InGaAsP oder InGaAlAs und Mantelschichten mit niedrigerem Brechungsindex realisiert. Die Einbettung des zweidimensionalen Lochgitters in die InP-basierte Halbleiterheterostruktur erlaubt die Integration mit aktiven optoelektronischen Bauteilen wie Sende- und Empfangselementen sowie die Verwendung bestehender Halbleiterstrukturierungstechnologien. Die photonischen Kristall-Wellenleiter wurden mit hochauflösender Elektronenstrahllithographie und einem zweistufigen Trockenätzprozess hergestellt. Damit konnten Lochradien von 100 nm und Lochtiefen von 4 µm realisiert werden. Zur experimentellen Untersuchung der hergestellten Strukturen wurden Messplätze für die optische Charakterisierung von Transmission und chromatischer Dispersion von photonischen Kristall-Wellenleitern und -Filtern aufgebaut und die Phasenverschiebungsmethode sowie die Modulationsmethode mit Offset angewendet. Damit konnte erstmals direkt die Gruppenlaufzeitdispersion eines photonischen Kristall-Wellenleiter-Filters gemessen werden. Numerische Untersuchungen wurden mit dem Verfahren der Entwicklung nach ebenen Wellen sowie mit dem FDTD-Verfahren durchgeführt. Die photonischen Kristall-Wellenleiter besitzen mehrere Wellenleitermoden, die teilweise refraktiven (auf Totalreflexion beruhenden) und teilweise diffraktiven (auf Bragg-Reflexion beruhenden) Charakter haben. Je nach Symmetrie treten zwischen den Moden Ministoppbänder auf, die sich im Transmissionsspektrum als Intensitätseinbrüche darstellen. Die spektrale Lage dieser Ministoppbänder hängt von der Wellenleitergeometrie ab. Messungen an Wellenleitern mit verschiedener Länge zeigen eine starke Variation der spektralen Breite der Ministoppbänder. Diese kann mit der Theorie der gekoppelten Moden unter Annahme unterschiedlicher Dämpfungswerte für die gekoppelten Wellenleitermoden erklärt werden. Die entscheidene Wellenleitereigenschaft für praktische Anwendungen ist die Wellenleiterdämpfung. Diese wurde mit den Verfahren der Fabry-Pérot-Resonanzen sowie der Längenvariation experimentell bestimmt. Durch Wahl eines geeigneten Schichtaufbaus und Optimierung der Herstellungsprozesse konnten die für das untersuchte Materialsystem niedrigsten Dämpfungswerte in photonischen Kristall-Wellenleitern erzielt werden. Für W7-, W5- und W3-Wellenleiter wurden Dämpfungswerte von 0,2 dB/mm, 0,6 dB/mm und 1,5 dB/mm erreicht, die schmaleren W1-Wellenleiter zeigen Verluste von 27 dB/mm. Zwei Typen optischer Wellenleiter-Filter wurden untersucht: Richtkoppler sowie Resonatoren. Photonische Kristall-Wellenleiter-Richtkoppler eignen sich als ultrakompakte Demultiplexer und Kanal-Auslasser. Bei den experimentell realisierten photonischen Kristall-Wellenleiter-Richtkopplern konnte das eingekoppelte Licht je nach Wellenlänge in den einen oder anderen Ausgangswellenleiter gelenkt werden. Bei photonischen Kristall-Wellenleitern mit Resonatoren konnten Güte-Faktoren bis zu 1,5*10^4 bei einem Kanalabstand von 100 GHz realisiert werden. Die Gruppenlaufzeitdispersion in diesen Strukturen variiert zwischen -250 ps/nm und +250 ps/nm, so dass mit einem 420 µm langen photonischen Kristall-Wellenleiter-Filter die Dispersion von 15 km Standardglasfaser bei 1,55 µm Wellenlänge kompensiert werden kann. Mit Hilfe von kleinen Temperaturänderungen kann die Resonanzkurve verschoben werden. Der demonstrierte photonische Kristall-Wellenleiter-Resonator stellt daher einen miniaturisierten durchstimmbaren Dispersionskompensator dar.
Abstimmbare Halbleiterlaser und schmalbandige Laserarrays mit verteilter lateraler Rückkopplung
(2003)
Im Rahmen dieser Arbeit wurden zwei verschiedene Typen von Halbleiterlasern mit verteilter Rückkopplung (DFB-Laser) entwickelt. Die Laser basieren auf Rippenwellenleitern und verfügen zusätzlich über ein dazu senkrecht orientiertes Metallgitter. Der evaneszente Teil der im Rippenwellenleiter geführten Lichtwelle überlappt mit dem Gitter. Durch diese periodische Variation des effektiven Brechungsindex wird die verteilte Rückkopplung gewährleistet, was eine longitudinal monomodige Laseremission zur Folge hat. Beiden Lasertypen ist gemeinsam, dass der Herstellungsprozess auf einem vom Materialsystem unabhängigen Konzept basiert. Diese Tatsache ist von besonderem Interesse, da so entsprechende Laser für unterschiedlichste Wellenlängenbereiche gefertigt werden können, ohne hierfür neue Herstellungsverfahren zu entwickeln. Den ersten Schwerpunkt der Arbeit bilden Untersuchungen zu sog. abstimmbaren Lasern, deren Emissionswellenlänge innerhalb eines relativ großen Bereichs quasikontinuierlich einstellbar ist. Der Abstimmmechanismus kann mit dem Vernier-Prinzip erklärt werden. Der Laser besteht hierbei aus zwei gekoppelten Segmenten, die jeweils über eine Reihe von Moden (Modenkamm) verfügen. Der Abstand der Moden innerhalb eines Segments ist konstant, wohingegen die Modenabstände der beiden Segmente leicht unterschiedlich sind. Die Emissionswellenlänge des Lasers ist bestimmt durch den Überlapp zweier Moden aus den beiden Segmenten, wobei die Modenkämme so ausgelegt sind, dass gleichzeitig maximal ein Modenpaar überlappt. Eine kleine relative Verschiebung der beiden Modenkämme führt zu einer vergleichsweise großen Verschiebung der Emissionswellenlänge auf Grund des veränderten Überlapps. Die Modenkämme wurden durch spezielle DFB-Gitter, sog. binary superimposed gratings (BSG), realisiert, die, anders als bei konventionellen DFB-Lasern, für mehrere Bragg-Wellenlängen konstruktive Interferenz zulassen und erstmalig bei DFB-Lasern eingesetzt wurden. BSGs zeichnen sich durch sehr gute optische Eigenschaften bei gleichzeitig einfacher Herstellung aus. Zum Abstimmen der Wellenlänge wurde der Brechungsindex des Lasers gezielt durch den Injektionsstrom bzw. die Bauteiltemperatur verändert. Im Rahmen dieser Arbeit konnten abstimmbare Laser auf unterschiedlichen Materialsystemen (InGaAs/GaAs, GaInNAs/GaAs, InGaAsP/InP) hergestellt werden. Der maximale diskrete Abstimmbereich beträgt 38 nm bzw. 8,9 THz und ist durch die Breite des Verstärkungsspektrums limitiert. Quasikontinuierlich konnte ein Abstimmbereich von 15 nm bzw. 3,9 THz erreicht werden. Die typische minimale Seitenmodenunterdrückung (SMSR) beträgt 30 bis 35 dB. Durch Hinzufügen eines dritten Segments ohne Gitter konnte die Ausgangsleistung unabhängig von der Wellenlänge konstant gehalten werden. Den zweiten Schwerpunkt der Arbeit bildet die Entwicklung von DFB-Laser-Arrays mit dem Ziel, longitudinal monomodige Laser mit hoher Ausgangsleistung zu erhalten. Die DFB-Laser-Arrays basieren auf dem oben beschriebenen Prinzip von DFB-Lasern mit lateralem Metallgitter und verfügen über mehrere Rippenwellenleiter, die im lateralen Abstand von wenigen Mikrometern angeordnet sind. Für große Abstände zwischen den einzelnen Lasern des Arrays (Elemente) emittieren diese, weitgehend unabhängig von einander, jeweils longitudinal monomodiges Licht (quasimonochromatische Emission). Die spektrale Breite beträgt hierbei typischerweise 50 bis 70 GHz. Für kleine Elementabstände koppeln die einzelnen Lichtwellen miteinander, was zu einer mit einem konventionellen DFB-Laser vergleichbaren Linienbreite führt. Während die ungekoppelten Arrays über ein gaußförmiges Fernfeld verfügen, ergibt sich für die gekoppelten Arrays ein Interferenzmuster, das stark von verschiedenen Laserparametern (wie z. B. dem Elementabstand) abhängt. Bei InGaAs/GaAs basierenden Arrays (Wellenlänge ca. 980 nm) ergibt sich für DFB-Laser-Arrays mit vier Elementen eine Ausgangsleistung von ca. 200 mW pro Facette, die durch die Wärmeabfuhr begrenzt wird. Trotz der starken thermischen Limitierung (die Laser waren nicht aufgebaut) konnte die 3,5-fache Ausgangsleistung eines Referenzlasers erzielt werden. Bei InGaSb/GaSb basierenden Arrays mit vier Elementen (Wellenlänge ca. 2,0 µm) konnte eine Ausgangsleistung von ca. 30 mW pro Facette erreicht werden, was dem 3,3-fachen eines Referenzlasers entspricht. Die Verwendung von DFB-Laser-Arrays führt folglich zu einer signifikanten Leistungssteigerung, die sich durch geeignete Maßnahmen (Facettenvergütung, Montage, Skalierung) noch weiter erhöhen ließe.
In a first aspect of this work, the development of photonic crystal based widely tunable laser diodes and their monolithic integration with photonic crystal based passive waveguide and coupler structures is explored theoretically and experimentally. In these devices, the photonic crystal is operated in the photonic bandgap which can be used for the realization of effective reflectors and waveguide structures. Such tunable light sources are of great interest for the development of optical network systems that are based on wavelength division multiplexing. In a second aspect of this work, the operation of a photonic crystal block near the photonic band edge is investigated with respect to the so-called superprism effect. After a few introductory remarks that serve to motivate this work, chapter 3 recapitulates some aspects of semiconductor lasers and photonic crystals that are essential for the understanding of this work so that the reader should be readily equipped with the tools to appreciate the results presented in this work.