330 Wirtschaft
Refine
Has Fulltext
- yes (158)
Year of publication
Document Type
- Doctoral Thesis (107)
- Journal article (17)
- Book (12)
- Working Paper (6)
- Master Thesis (5)
- Report (4)
- Bachelor Thesis (3)
- Conference Proceeding (2)
- Book article / Book chapter (1)
- Other (1)
Keywords
- Deutschland (21)
- China (13)
- Einzelhandel (9)
- Unternehmen (7)
- Nachhaltigkeit (6)
- Rechnungslegung (6)
- Innovation (5)
- Supply Chain Management (5)
- Unternehmensbewertung (5)
- Accounting (4)
Institute
- Betriebswirtschaftliches Institut (74)
- Volkswirtschaftliches Institut (42)
- Institut für Geographie und Geologie (16)
- Institut für Kulturwissenschaften Ost- und Südasiens (11)
- Wirtschaftswissenschaftliche Fakultät (7)
- Graduate School of Law, Economics, and Society (4)
- Juristische Fakultät (3)
- Universität Würzburg (2)
- Institut für Mathematik (1)
- Institut für Psychologie (1)
Sonstige beteiligte Institutionen
ResearcherID
- B-4606-2017 (1)
- I-5818-2014 (1)
Complementary currencies have spread to many places around the world at the beginning of the 21st century. Creating sustainable economic cycles and short transport routes are often the goals of introducing them. Due to their manageability, regional currencies can be embedded in debates of regional economics and sustainability. Above all, they are suitable for democratic experiments that can show in real environments whether currency designs work as examples of collaborative communities and research. One of these monetary experiments is the climate bonus, which is linked to the local currency Chiemgauer. The research path goes into the daily routine of a real laboratory to find out which methods would be effective enough to deliver carbon savings. The climate bonus creates a monetary network where people can try out new behaviors in a protected space. As a result, three years after the initiation of the project, carbon reductions are above expectations.
The collection at hand is concerned with learning curve effects in hospitals as highly specialized expert organizations and comprises four papers, each focusing on a different aspect of the topic. Three papers are concerned with surgeons, and one is concerned with the staff of the emergency room in a conservative treatment.
The preface compactly addresses the steadily increasing health care costs and economic pressure, the hospital landscape in Germany as well as its development. Furthermore, the DRG lump-sum compensation and the characteristics of the health sector, which is strongly regulated by the state and in which ethical aspects must be omnipresent, are outlined. Besides, the benefit of knowing about learning curve effects in order to cut costs and to keep quality stable or even improve it, is addressed.
The first paper of the collection investigates the learning effects in a hospital which has specialized on endoprosthetics (total hip and knee replacement). Doing so, the specialized as well as the non-specialized interventions are studied. Costs are not investigated directly, but cost indicators. The indicator of costs in the short term are operating room times. The one of medium- to long-term costs is quality. It is operationalized by complications in the post-anesthesia care unit. The study estimates regression models (OLS and logit). The results indicate that the specialization comes along with advantages due to learning effects in terms of shorter operating room times and lower complication rates in endoprosthetic interventions. For the non-specialized interventions, the results are the same. There are no possibly negative effects of specialization on non-specialized surgeries, but advantageous spillover effects. Altogether, the specialization can be regarded as reasonable, as it cuts costs of all surgeries in the short, medium, and long term. The authors are Carsten Bauer, Nele Möbs, Oliver Unger, Andrea Szczesny, and Christian Ernst.
In the second paper surgeons’ learning curves effects in a teamwork vs. an individual work setting are in the focus of interest. Thus, the study combines learning curve effects with teamwork in health care, an issue increasingly discussed in recent literature. The investigated interventions are tonsillectomies (surgical excision of the palatine tonsils), a standard intervention. The indicator of costs in the short and medium to long term are again operating room times and complications as a proxy for quality respectively. Complications are secondary bleedings, which usually occur a few days after surgery. The study estimates regression models (OLS and logit). The results show that operating room times decrease with increasing surgeon’s experience. Surgeons who also operate in teams learn faster than the ones always operating on their own. Thus, operating room times are shorter for surgeons who also take part in team interventions. As a special feature, the data set contains the costs per case. This enables assuring that the assumed cost indicators are valid. The findings recommend team surgeries especially for resident physicians. The authors are Carsten Bauer, Oliver Unger, and Martin Holderried.
The third paper is dedicated to stapes surgery, a therapy for conductive hearing loss caused by otosclerosis (overflow bone growth). It is conceptually simple, but technically difficult. Therefore, it is regarded as the optimum to study learning curve effects in surgery. The paper seeks a comprehensive investigation. Thus, operating room times are employed as short-term cost indicator and quality as the medium to long term one. To measure quality, the postoperative difference between air and bone conduction threshold as well as a combination of this difference and the absence of complications. This paper also estimates different regression models (OLS and logit). Besides investigating the effects on department level, the study also considers the individual level, this means operating room times and quality are investigated for individual surgeons. This improves the comparison of learning curves, as the surgeons worked under widely identical conditions. It becomes apparent that the operating room times initially decrease with increasing experience. The marginal effect of additional experience gets smaller until the direction of the effect changes and the operating room times increase with increasing experience, probably caused by the allocation of difficult cases to the most experienced surgeons. Regarding quality, no learning curve effects are observed. The authors are Carsten Bauer, Johannes Taeger, and Kristen Rak.
The fourth paper is a systematic literature review on learning effects in the treatment of ischemic strokes. In case of stroke, every minute counts. Therefore, there is the inherent need to reduce the time from symptom onset to treatment. The article is concerned with the reduction of the time from arrival at the hospital to thrombolysis treatment, the so-called “door-to-needle time”. In the literature, there are studies on learning in a broader sense caused by a quality improvement program as well as learning in a narrower sense, in which learning curve effects are evaluated. Besides, studies on the time differences between low-volume and high-volume hospitals are considered, as the differences are probably the result of learning and economies of scale. Virtually all the 165 evaluated articles report improvements regarding the time to treatment. Furthermore, the clinical results substantiate the common association of shorter times from arrival to treatment with improved clinical outcomes. The review additionally discusses the economic implications of the results. The author is Carsten Bauer.
The preface brings forward that after the measurement of learning curve effects, further efforts are necessary for using them in order to increase efficiency, as the issue does not admit of easy, standardized solutions. Furthermore, the postface emphasizes the importance of multiperspectivity in research for the patient outcome, the health care system, and society.
Recent computing advances are driving the integration of artificial intelligence (AI)-based systems into nearly every facet of our daily lives. To this end, AI is becoming a frontier for enabling algorithmic decision-making by mimicking or even surpassing human intelligence. Thereupon, these AI-based systems can function as decision support systems (DSSs) that assist experts in high-stakes use cases where human lives are at risk. All that glitters is not gold, due to the accompanying complexity of the underlying machine learning (ML) models, which apply mathematical and statistical algorithms to autonomously derive nonlinear decision knowledge. One particular subclass of ML models, called deep learning models, accomplishes unsurpassed performance, with the drawback that these models are no longer explainable to humans. This divergence may result in an end-user’s unwillingness to utilize this type of AI-based DSS, thus diminishing the end-user’s system acceptance.
Hence, the explainable AI (XAI) research stream has gained momentum, as it develops techniques to unravel this black-box while maintaining system performance. Non-surprisingly, these XAI techniques become necessary for justifying, evaluating, improving, or managing the utilization of AI-based DSSs. This yields a plethora of explanation techniques, creating an XAI jungle from which end-users must choose. In turn, these techniques are preliminarily engineered by developers for developers without ensuring an actual end-user fit. Thus, it renders unknown how an end-user’s mental model behaves when encountering such explanation techniques.
For this purpose, this cumulative thesis seeks to address this research deficiency by investigating end-user perceptions when encountering intrinsic ML and post-hoc XAI explanations. Drawing on this, the findings are synthesized into design knowledge to enable the deployment of XAI-based DSSs in practice. To this end, this thesis comprises six research contributions that follow the iterative and alternating interplay between behavioral science and design science research employed in information systems (IS) research and thus contribute to the overall research objectives as follows: First, an in-depth study of the impact of transparency and (initial) trust on end-user acceptance is conducted by extending and validating the unified theory of acceptance and use of technology model. This study indicates both factors’ strong but indirect effects on system acceptance, validating further research incentives. In particular, this thesis focuses on the overarching concept of transparency. Herein, a systematization in the form of a taxonomy and pattern analysis of existing user-centered XAI studies is derived to structure and guide future research endeavors, which enables the empirical investigation of the theoretical trade-off between performance and explainability in intrinsic ML algorithms, yielding a less gradual trade-off, fragmented into three explainability groups. This includes an empirical investigation on end-users’ perceived explainability of post-hoc explanation types, with local explanation types performing best. Furthermore, an empirical investigation emphasizes the correlation between comprehensibility and explainability, indicating almost significant (with outliers) results for the assumed correlation. The final empirical investigation aims at researching XAI explanation types on end-user cognitive load and the effect of cognitive load on end-user task performance and task time, which also positions local explanation types as best and demonstrates the correlations between cognitive load and task performance and, moreover, between cognitive load and task time. Finally, the last research paper utilizes i.a. the obtained knowledge and derives a nascent design theory for XAI-based DSSs. This design theory encompasses (meta-) design requirements, design principles, and design features in a domain-independent and interdisciplinary fashion, including end-users and developers as potential user groups. This design theory is ultimately tested through a real-world instantiation in a high-stakes maintenance scenario.
From an IS research perspective, this cumulative thesis addresses the lack of research on perception and design knowledge for an ensured utilization of XAI-based DSS. This lays the foundation for future research to obtain a holistic understanding of end-users’ heuristic behaviors during decision-making to facilitate the acceptance of XAI-based DSSs in operational practice.
We quantify the contemporaneous relationships among stock markets in the euro area, the United States, and a group of emerging economies over the period from 2008 to 2017. Exploiting the heteroskedasticity in the stock market data, we identify shocks that originated in the respective domestic markets and shocks that are common to all markets. Our results underline the leading role of the United States in international equity markets, but also point to the importance of indirect spillovers for all economies. Variance decompositions show that while domestic shocks explain the bigger part of the variation in each stock market, a substantial part of the variation in the euro area and the emerging economies can be attributed to foreign shocks. A comparison with a sample covering the pre‐crisis period from 1999 to 2007 suggests a strengthening of the linkages among global stock markets in recent years. In particular, the spillovers from advanced to emerging economies have become more pronounced.
In dieser Dissertation werden ausgewählte Aspekte der Steuervermeidung und grenzüberschreitenden Besteuerung betrachtet. Im Teil B liegt der Fokus auf der Empirie zu Steuervermeidung und Gewinnverlagerung multinationaler Unternehmen mit drei einzelnen Aufsätzen. Der Teil C untersucht die unterschiedliche Besteuerung von Human- und Sachvermögen anhand der beiden fundamentalen Besteuerungsprinzipien des Äquivalenz- und des Leistungsfähigkeitsprinzips. Der letzte Aufsatz (Teil D) analysiert das Werturteilsfreiheitspostulat im Stakeholder-Ansatz und zeigt mithilfe eines Fallbeispiels, wie die Unternehmensbesteuerung in unterschiedliche Stakeholder-Ansätze integriert werden kann. Eine abschließende Gesamtwürdigung geht auf verbleibende Forschungsfragen ein (Teil E).
Somit wird in der vorliegenden Dissertation grenzüberschreitende Besteuerung anhand betriebswirtschaftlicher, besteuerungsprinzipiengestützter bzw. dogmatischer und wissenschaftstheoretischer Gesichtspunkte untersucht.
Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.
Salience bias and overwork
(2022)
In this study, we enrich a standard principal–agent model with hidden action by introducing salience-biased perception on the agent's side. The agent's misguided focus on salient payoffs, which leads the agent's and the principal's probability assessments to diverge, has two effects: First, the agent focuses too much on obtaining a bonus, which facilitates incentive provision. Second, the principal may exploit the diverging probability assessments to relax participation. We show that salience bias can reverse the nature of the inefficiency arising from moral hazard; i.e., the principal does not necessarily provide insufficient incentives that result in inefficiently low effort but instead may well provide excessive incentives that result in inefficiently high effort.
Over the last few decades, hours worked per capita have declined substantially in many OECD economies. Using the standard neoclassical growth model with endogenous work–leisure choice, we assess the role of trend growth slowdown in accounting for the decline in hours worked. In the model, a permanent reduction in technological growth decreases steady‐state hours worked by increasing the consumption–output ratio. Our empirical analysis exploits cross‐country variation in the timing and size of the decline in technological growth to show that technological growth has a highly significant positive effect on hours. A decline in the long‐run trend of technological growth by 1 percentage point is associated with a decline in trend hours worked in the range of 1–3%. This result is robust to controlling for taxes, which have been found in previous studies to be an important determinant of hours. Our empirical finding is quantitatively in line with the one implied by a calibrated version of the model, though evidence for the model’s implication that the effect on hours works via changes in the consumption–output ratio is rather mixed.
Purpose The purpose of this paper is to enhance consistent partial least squares (PLSc) to yield consistent parameter estimates for population models whose indicator blocks contain a subset of correlated measurement errors. Design/methodology/approach Correction for attenuation as originally applied by PLSc is modified to include a priori assumptions on the structure of the measurement error correlations within blocks of indicators. To assess the efficacy of the modification, a Monte Carlo simulation is conducted. Findings In the presence of population measurement error correlation, estimated parameter bias is generally small for original and modified PLSc, with the latter outperforming the former for large sample sizes. In terms of the root mean squared error, the results are virtually identical for both original and modified PLSc. Only for relatively large sample sizes, high population measurement error correlation, and low population composite reliability are the increased standard errors associated with the modification outweighed by a smaller bias. These findings are regarded as initial evidence that original PLSc is comparatively robust with respect to misspecification of the structure of measurement error correlations within blocks of indicators. Originality/value Introducing and investigating a new approach to address measurement error correlation within blocks of indicators in PLSc, this paper contributes to the ongoing development and assessment of recent advancements in partial least squares path modeling.
Plattform für das integrierte Management von Kollaborationen in Wertschöpfungsnetzwerken (PIMKoWe)
(2022)
Das Verbundprojekt „Plattform für das integrierte Management von Kollaborationen in Wertschöpfungsnetzwerken“ (PIMKoWe – Förderkennzeichen „02P17D160“) ist ein Forschungsvorhaben im Rahmen des Forschungsprogramms „Innovationen für die Produktion, Dienstleistung und Arbeit von morgen“ der Bekanntmachung „Industrie 4.0 – Intelligente Kollaborationen in dynamischen Wertschöpfungs-netzwerken“ (InKoWe). Das Forschungsvorhaben wurde mit Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) gefördert und durch den Projektträger des Karlsruher Instituts für Technologie (PTKA) betreut.
Ziel des Forschungsprojekts PIMKoWe ist die Entwicklung und Bereitstellung einer Plattformlösung zur Flexibilisierung, Automatisierung und Absicherung von Kooperationen in Wertschöpfungsnetzwerken des industriellen Sektors.