330 Wirtschaft
Refine
Has Fulltext
- yes (154)
Year of publication
Document Type
- Doctoral Thesis (105)
- Journal article (15)
- Book (12)
- Working Paper (6)
- Master Thesis (5)
- Report (4)
- Bachelor Thesis (3)
- Conference Proceeding (2)
- Book article / Book chapter (1)
- Other (1)
Keywords
- Deutschland (21)
- China (13)
- Einzelhandel (9)
- Unternehmen (7)
- Nachhaltigkeit (6)
- Rechnungslegung (6)
- Innovation (5)
- Supply Chain Management (5)
- Unternehmensbewertung (5)
- Accounting (4)
Institute
- Betriebswirtschaftliches Institut (72)
- Volkswirtschaftliches Institut (42)
- Institut für Geographie und Geologie (16)
- Institut für Kulturwissenschaften Ost- und Südasiens (11)
- Wirtschaftswissenschaftliche Fakultät (6)
- Graduate School of Law, Economics, and Society (4)
- Juristische Fakultät (2)
- Universität Würzburg (2)
- Institut für Mathematik (1)
- Institut für Psychologie (1)
Sonstige beteiligte Institutionen
ResearcherID
- B-4606-2017 (1)
- I-5818-2014 (1)
In dieser Dissertation werden ausgewählte Aspekte der Steuervermeidung und grenzüberschreitenden Besteuerung betrachtet. Im Teil B liegt der Fokus auf der Empirie zu Steuervermeidung und Gewinnverlagerung multinationaler Unternehmen mit drei einzelnen Aufsätzen. Der Teil C untersucht die unterschiedliche Besteuerung von Human- und Sachvermögen anhand der beiden fundamentalen Besteuerungsprinzipien des Äquivalenz- und des Leistungsfähigkeitsprinzips. Der letzte Aufsatz (Teil D) analysiert das Werturteilsfreiheitspostulat im Stakeholder-Ansatz und zeigt mithilfe eines Fallbeispiels, wie die Unternehmensbesteuerung in unterschiedliche Stakeholder-Ansätze integriert werden kann. Eine abschließende Gesamtwürdigung geht auf verbleibende Forschungsfragen ein (Teil E).
Somit wird in der vorliegenden Dissertation grenzüberschreitende Besteuerung anhand betriebswirtschaftlicher, besteuerungsprinzipiengestützter bzw. dogmatischer und wissenschaftstheoretischer Gesichtspunkte untersucht.
Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.
Salience bias and overwork
(2022)
In this study, we enrich a standard principal–agent model with hidden action by introducing salience-biased perception on the agent's side. The agent's misguided focus on salient payoffs, which leads the agent's and the principal's probability assessments to diverge, has two effects: First, the agent focuses too much on obtaining a bonus, which facilitates incentive provision. Second, the principal may exploit the diverging probability assessments to relax participation. We show that salience bias can reverse the nature of the inefficiency arising from moral hazard; i.e., the principal does not necessarily provide insufficient incentives that result in inefficiently low effort but instead may well provide excessive incentives that result in inefficiently high effort.
Over the last few decades, hours worked per capita have declined substantially in many OECD economies. Using the standard neoclassical growth model with endogenous work–leisure choice, we assess the role of trend growth slowdown in accounting for the decline in hours worked. In the model, a permanent reduction in technological growth decreases steady‐state hours worked by increasing the consumption–output ratio. Our empirical analysis exploits cross‐country variation in the timing and size of the decline in technological growth to show that technological growth has a highly significant positive effect on hours. A decline in the long‐run trend of technological growth by 1 percentage point is associated with a decline in trend hours worked in the range of 1–3%. This result is robust to controlling for taxes, which have been found in previous studies to be an important determinant of hours. Our empirical finding is quantitatively in line with the one implied by a calibrated version of the model, though evidence for the model’s implication that the effect on hours works via changes in the consumption–output ratio is rather mixed.
Purpose The purpose of this paper is to enhance consistent partial least squares (PLSc) to yield consistent parameter estimates for population models whose indicator blocks contain a subset of correlated measurement errors. Design/methodology/approach Correction for attenuation as originally applied by PLSc is modified to include a priori assumptions on the structure of the measurement error correlations within blocks of indicators. To assess the efficacy of the modification, a Monte Carlo simulation is conducted. Findings In the presence of population measurement error correlation, estimated parameter bias is generally small for original and modified PLSc, with the latter outperforming the former for large sample sizes. In terms of the root mean squared error, the results are virtually identical for both original and modified PLSc. Only for relatively large sample sizes, high population measurement error correlation, and low population composite reliability are the increased standard errors associated with the modification outweighed by a smaller bias. These findings are regarded as initial evidence that original PLSc is comparatively robust with respect to misspecification of the structure of measurement error correlations within blocks of indicators. Originality/value Introducing and investigating a new approach to address measurement error correlation within blocks of indicators in PLSc, this paper contributes to the ongoing development and assessment of recent advancements in partial least squares path modeling.
Plattform für das integrierte Management von Kollaborationen in Wertschöpfungsnetzwerken (PIMKoWe)
(2022)
Das Verbundprojekt „Plattform für das integrierte Management von Kollaborationen in Wertschöpfungsnetzwerken“ (PIMKoWe – Förderkennzeichen „02P17D160“) ist ein Forschungsvorhaben im Rahmen des Forschungsprogramms „Innovationen für die Produktion, Dienstleistung und Arbeit von morgen“ der Bekanntmachung „Industrie 4.0 – Intelligente Kollaborationen in dynamischen Wertschöpfungs-netzwerken“ (InKoWe). Das Forschungsvorhaben wurde mit Mitteln des Bundesministeriums für Bildung und Forschung (BMBF) gefördert und durch den Projektträger des Karlsruher Instituts für Technologie (PTKA) betreut.
Ziel des Forschungsprojekts PIMKoWe ist die Entwicklung und Bereitstellung einer Plattformlösung zur Flexibilisierung, Automatisierung und Absicherung von Kooperationen in Wertschöpfungsnetzwerken des industriellen Sektors.
Die Welt befindet sich in einem tiefgreifenden Wandlungsprozess von einer Industrie- zu einer Wissensgesellschaft. Die Automatisierung sowohl physischer als auch kognitiver Arbeit verlagert die Nachfrage des Arbeitsmarktes zunehmend zu hoch qualifizierten Mitarbeitern, die als High Potentials bezeichnet werden. Diese zeichnen sich neben ihrer Intelligenz durch vielfältige Fähigkeiten wie Empathievermögen, Kreativität und Problemlösungskompetenzen aus. Humankapital gilt als Wettbewerbsfaktor der Zukunft, jedoch beklagten Unternehmen bereits Ende des 20. Jahrhunderts einen Mangel an Fach- und Führungspersonal, der durch die Pandemie weiter verstärkt wird. Aus diesem Grund rücken Konzepte zur Rekrutierung und Mitarbeiterbindung in den Fokus der Unternehmen.
Da ethisches und ökologisches Bewusstsein in der Bevölkerung an Bedeutung gewinnen, lässt sich annehmen, dass Bewerber zukünftig verantwortungsbewusste Arbeitgeber bevorzugen. Nachhaltigkeit bzw. Corporate Responsibility wird damit zum Wettbewerbsfaktor zur Gewinnung und Bindung von Talenten. Mit Hilfe des Ansatzes der identitätsorientierten Markenführung wird ein Verständnis davon hergestellt, wie es Unternehmen gelingt, eine starke Arbeitgebermarke aufzubauen. Anhand einer konzeptionellen, praktischen und empirischen Untersuchung am Unternehmensbeispiel Unilever werden die Auswirkungen von umfassendem ökologischem und gesellschaftlichem Engagement auf die Arbeitgeberattraktivität analysiert.
Es zeigt sich, dass Nachhaltigkeit – konkretisiert über die 17 Sustainable Develop-ment Goals (SDGs) und verankert im Kern der Marke – die erfolgreiche Führung einer Employer Brand ermöglicht. Dieses Ergebnis resultiert sowohl aus dem theoretischen als auch aus dem empirischen Teil dieser Arbeit. Im letzteren konnten unter Einsatz eines Strukturgleichungsmodells drei generelle positive Wirkzusammenhänge bestätigt werden: Bewerber fühlen sich zu verantwortungsbewussten Unternehmen hingezogen, weshalb sie einen P-O-F empfinden. Diese wahrgenommene Passung mit dem Unternehmen steigert die Arbeitgeberattraktivität aus Sicht der potenziellen Bewerber, wodurch sich wiederum die Wahrscheinlichkeit für eine Bewerbungsabsicht und die Akzeptanz eines Arbeitsplatzangebotes erhöht. Es wird damit die Annahme bestätigt, dass den Herausforderungen der Personalbeschaffung über eine konsequente nachhaltige Ausrichtung der Geschäftstätigkeit und deren glaubhafte Kommunikation über die Arbeitgebermarke begegnet werden kann.
Innovative Software kann die Position eines Unternehmens im Wettbewerb sichern. Die Einführung innovativer Software ist aber alles andere als einfach. Denn obgleich die technischen Aspekte offensichtlicher sind, dominieren organisationale Aspekte. Zu viele Softwareprojekte schlagen fehl, da die Einführung nicht gelingt, trotz Erfüllung technischer Anforderungen. Vor diesem Hintergrund ist das Forschungsziel der Masterarbeit, Risiken und Erfolgsfaktoren für die Einführung innovativer Software in Unternehmen zu finden, eine Strategie zu formulieren und dabei die Bedeutung von Schlüsselpersonen zu bestimmen.
Risk measures are commonly used to prepare for a prospective occurrence of an adverse event. If we are concerned with discrete risk phenomena such as counts of natural disasters, counts of infections by a serious disease, or counts of certain economic events, then the required risk forecasts are to be computed for an underlying count process. In practice, however, the discrete nature of count data is sometimes ignored and risk forecasts are calculated based on Gaussian time series models. But even if methods from count time series analysis are used in an adequate manner, the performance of risk forecasting is affected by estimation uncertainty as well as certain discreteness phenomena. To get a thorough overview of the aforementioned issues in risk forecasting of count processes, a comprehensive simulation study was done considering a broad variety of risk measures and count time series models. It becomes clear that Gaussian approximate risk forecasts substantially distort risk assessment and, thus, should be avoided. In order to account for the apparent estimation uncertainty in risk forecasting, we use bootstrap approaches for count time series. The relevance and the application of the proposed approaches are illustrated by real data examples about counts of storm surges and counts of financial transactions.
The digital transformation facilitates new forms of collaboration between companies along the supply chain and between companies and consumers. Besides sharing information on centralized platforms, blockchain technology is often regarded as a potential basis for this kind of collaboration. However, there is much hype surrounding the technology due to the rising popularity of cryptocurrencies, decentralized finance (DeFi), and non-fungible tokens (NFTs). This leads to potential issues being overlooked. Therefore, this thesis aims to investigate, highlight, and address the current weaknesses of blockchain technology: Inefficient consensus, privacy, smart contract security, and scalability.
First, to provide a foundation, the four key challenges are introduced, and the research objectives are defined, followed by a brief presentation of the preliminary work for this thesis.
The following four parts highlight the four main problem areas of blockchain. Using big data analytics, we extracted and analyzed the blockchain data of six major blockchains to identify potential weaknesses in their consensus algorithm. To improve smart contract security, we classified smart contract functionalities to identify similarities in structure and design. The resulting taxonomy serves as a basis for future standardization efforts for security-relevant features, such as safe math functions and oracle services. To challenge privacy assumptions, we researched consortium blockchains from an adversary role. We chose four blockchains with misconfigured nodes and extracted as much information from those nodes as possible. Finally, we compared scalability solutions for blockchain applications and developed a decision process that serves as a guideline to improve the scalability of their applications.
Building on the scalability framework, we showcase three potential applications for blockchain technology. First, we develop a token-based approach for inter-company value stream mapping. By only relying on simple tokens instead of complex smart-contracts, the computational load on the network is expected to be much lower compared to other solutions. The following two solutions use offloading transactions and computations from the main blockchain. The first approach uses secure multiparty computation to offload the matching of supply and demand for manufacturing capacities to a trustless network. The transaction is written to the main blockchain only after the match is made. The second approach uses the concept of payment channel networks to enable high-frequency bidirectional micropayments for WiFi sharing. The host gets paid for every second of data usage through an off-chain channel. The full payment is only written to the blockchain after the connection to the client gets terminated.
Finally, the thesis concludes by briefly summarizing and discussing the results and providing avenues for further research.