## 71.00.00 Electronic structure of bulk materials (see section 73 for electronic structure of surfaces, interfaces, low-dimensional structures, and nanomaterials; for electronic structure of superconductors, see 74.25.Jb)

### Refine

#### Has Fulltext

- yes (4)

#### Is part of the Bibliography

- yes (4)

#### Document Type

- Doctoral Thesis (4)

#### Keywords

- Molekularstrahlepitaxie (2)
- Topologischer Isolator (2)
- ARPES (1)
- Bismutverbindungen (1)
- Elektronengas (1)
- HgTe (1)
- Inversion Symmetry Breaking (1)
- Ladungslokalisierung (1)
- MBE (1)
- Magnetowiderstand (1)

#### Institute

Breaking inversion symmetry in crystalline solids enables the formation of spin-polarized electronic states by spin-orbit coupling without the need for magnetism. A variety of interesting physical phenomena related to this effect have been intensively investigated in recent years, including the Rashba effect, topological insulators and Weyl semimetals. In this work, the interplay of inversion symmetry breaking and spin-orbit coupling and, in particular their general influence on the character of electronic states, i.e., on the spin and orbital degrees of freedom, is investigated experimentally. Two different types of suitable model systems are studied: two-dimensional surface states for which the Rashba effect arises from the inherently broken inversion symmetry at the surface, and a Weyl semimetal, for which inversion symmetry is broken in the three-dimensional crystal structure. Angle-resolved photoelectron spectroscopy provides momentum-resolved access to the spin polarization and the orbital composition of electronic states by means of photoelectron spin detection and dichroism with polarized light. The experimental results shown in this work are also complemented and supported by ab-initio density functional theory calculations and simple model considerations.
Altogether, it is shown that the breaking of inversion symmetry has a decisive influence on the Bloch wave function, namely, the formation of an orbital angular momentum. This mechanism is, in turn, of fundamental importance both for the physics of the surface Rashba effect and the topology of the Weyl semimetal TaAs.

The subject of this thesis is the fabrication and characterization of magnetic topological
insulator layers of (V,Bi,Sb)\(_2\)Te\(_3\) exhibiting the quantum anomalous Hall
effect. A major task was the experimental realization of the quantum anomalous
Hall effect, which is only observed in layers with very specific structural,
electronic and magnetic properties. These properties and their influence on the
quantum anomalous Hall effect are analyzed in detail.
First, the optimal conditions for the growth of pure Bi\(_2\)Te\(_3\) and Sb\(_2\)Te\(_3\) crystal
layers and the resulting structural quality are studied. The crystalline quality of
Bi\(_2\)Te\(_3\) improves significantly at higher growth temperatures resulting in a small
mosaicity-tilt and reduced twinning defects. The optimal growth temperature is
determined as 260\(^{\circ}\)C, low enough to avoid desorption while maintaining a high
crystalline quality.
The crystalline quality of Sb\(_2\)Te\(_3\) is less dependent on the growth temperature.
Temperatures below 230\(^{\circ}\)C are necessary to avoid significant material desorption,
though. Especially for the nucleation on Si(111)-H, a low sticking coefficient is
observed preventing the coalescence of islands into a homogeneous layer.
The influence of the substrate type, miscut and annealing sequence on the growth
of Bi\(_2\)Te\(_3\) layers is investigated. The alignment of the layer changes depending on
the miscut angle and annealing sequence: Typically, layer planes align parallel to
the Si(111) planes. This can enhance the twin suppression due to transfer of the
stacking order from the substrate to the layer at step edges, but results in a step
bunched layer morphology. For specific substrate preparations, however, the layer
planes are observed to align parallel to the surface plane. This alignment avoids
displacement at the step edges, which would cause anti-phase domains. This results
in narrow Bragg peaks in XRD rocking curve scans due to long-range order in
the absence of anti-phase domains. Furthermore, the use of rough Fe:InP(111):B
substrates leads to a strong reduction of twinning defects and a significantly reduced
mosaicity-twist due to the smaller lattice mismatch.
Next, the magnetically doped mixed compound V\(_z\)(Bi\(_{1−x}\)Sb\(_x\))\(_{2−z}\)Te\(_3\) is studied in
order to realize the quantum anomalous Hall effect. The addition of V and Bi to
Sb\(_2\)Te\(_3\) leads to efficient nucleation on the Si(111)-H surface and a closed, homogeneous
layer. Magneto-transport measurements of layers reveal a finite anomalous
Hall resistivity significantly below the von Klitzing constant. The observation of
the quantum anomalous Hall effect requires the complete suppression of parasitic
bulklike conduction due to defect induced carriers. This can be achieved by optimizing
the thickness, composition and growth conditions of the layers.
The growth temperature is observed to strongly influence the structural quality.
Elevated temperatures result in bigger islands, improved crystallographic orientation
and reduced twinning. On the other hand, desorption of primarily Sb is
observed, affecting the thickness, composition and reproducibility of the layers.
At 190\(^{\circ}\)C, desorption is avoided enabling precise control of layer thickness and
composition of the quaternary compound while maintaining a high structural
quality.
It is especially important to optimize the Bi/Sb ratio in the (V,Bi,Sb)\(_2\)Te\(_3\) layers,
since by alloying n-type Bi\(_2\)Te\(_3\) and p-type Sb\(_2\)Te\(_3\) charge neutrality is achieved at
a specific mixing ratio. This is necessary to shift the Fermi level into the magnetic
exchange gap and fully suppress the bulk conduction. The Sb content x furthermore
influences the in-plane lattice constant a significantly. This is utilized to
accurately determine x even for thin films below 10 nm thickness required for the
quantum anomalous Hall effect. Furthermore, x strongly influences the surface
morphology: with increasing x the island size decreases and the RMS roughness
increases by up to a factor of 4 between x = 0 and x = 1.
A series of samples with x varied between 0.56-0.95 is grown, while carefully
maintaining a constant thickness of 9 nm and a doping concentration of 2 at.% V.
Magneto-transport measurements reveal the charge neutral point around x = 0.86
at 4.2 K. The maximum of the anomalous Hall resistivity of 0.44 h/e\(^2\) is observed
at x = 0.77 close to charge neutrality. Reducing the measurement temperature
to 50 mK significantly increases the anomalous Hall resistivity. Several samples
in a narrow range of x between 0.76-0.79 show the quantum anomalous Hall effect
with the Hall resistivity reaching the von Klitzing constant and a vanishing
longitudinal resistivity. Having realized the quantum anomalous Hall effect as the
first group in Europe, this breakthrough enabled us to study the electronic and
magnetic properties of the samples in close collaborations with other groups.
In collaboration with the Physikalisch-Technische Bundesanstalt high-precision
measurements were conducted with detailed error analysis yielding a relative de-
viation from the von Klitzing constant of (0.17 \(\pm\) 0.25) * 10\(^{−6}\). This is published
as the smallest, most precise value at that time, proving the high quality of the
provided samples. This result paves the way for the application of magnetic topological
insulators as zero-field resistance standards.
Non-local magneto-transport measurements were conducted at 15 mK in close
collaboration with the transport group in EP3. The results prove that transport
happens through chiral edge channels. The detailed analysis of small anomalies in
transport measurements reveals instabilities in the magnetic phase even at 15 mK.
Their time dependent nature indicates the presence of superparamagnetic contributions
in the nominally ferromagnetic phase.
Next, the influence of the capping layer and the substrate type on structural properties
and the impact on the quantum anomalous Hall effect is investigated. To
this end, a layer was grown on a semi-insulating Fe:InP(111)B substrate using the
previously optimized growth conditions. The crystalline quality is improved significantly
with the mosaicity twist reduced from 5.4\(^{\circ}\) to 1.0\(^{\circ}\). Furthermore, a layer
without protective capping layer was grown on Si and studied after providing sufficient
time for degradation. The uncapped layer on Si shows perfect quantization,
while the layer on InP deviates by about 5%. This may be caused by the higher
crystalline quality, but variations in e.g. Sb content cannot be ruled out as the
cause. Overall, the quantum anomalous Hall effect seems robust against changes
in substrate and capping layer with only little deviations.
Furthermore, the dependence of the quantum anomalous Hall effect on the thickness
of the layers is investigated. Between 5-8 nm thickness the material typically
transitions from a 2D topological insulator with hybridized top and bottom surface
states to a 3D topological insulator. A set of samples with 6 nm, 8 nm, and
9 nm thickness exhibits the quantum anomalous Hall effect, while 5 nm and 15 nm
thick layers show significant bulk contributions. The analysis of the longitudinal
and Hall conductivity during the reversal of magnetization reveals distinct differences
between different thicknesses. The 6 nm thick layer shows scaling consistent
with the integer quantum Hall effect, while the 9 nm thick layer shows scaling expected
for the topological surface states of a 3D topological insulator. The unique
scaling of the 9 nm thick layer is of particular interest as it may be a result of
axion electrodynamics in a 3D topological insulator.
Subsequently, the influence of V doping on the structural and magnetic properties
of the host material is studied systematically. Similarly to Bi alloying, increased
V doping seems to flatten the layer surface significantly. With increasing V content,
Te bonding partners are observed to increase simultaneously in a 2:3 ratio
as expected for V incorporation on group-V sites. The linear contraction of the
in-plane and out-of-plane lattice constants with increasing V doping is quantitatively
consistent with the incorporation of V\(^{3+}\) ions, possibly mixed with V\(^{4+}\)
ions, at the group-V sites. This is consistent with SQUID measurements showing
a magnetization of 1.3 \(\mu_B\) per V ion.
Finally, magnetically doped topological insulator heterostructures are fabricated
and studied in magneto-transport. Trilayer heterostructures with a non-magnetic
(Bi,Sb)\(_2\)Te\(_3\) layer sandwiched between two magnetically doped layers are predicted
to host the axion insulator state if the two magnetic layers are decoupled and in
antiparallel configuration. Magneto-transport measurements of such a trilayer heterostructure
with 7 nm undoped (Bi,Sb)\(_2\)Te\(_3\) between 2 nm thick layers doped with
1.5 at.% V exhibit a zero Hall plateau representing an insulating state. Similar results
in the literature were interpreted as axion insulator state, but in the absence
of a measurement showing the antiparallel magnetic orientation other explanations
for the insulating state cannot be ruled out.
Furthermore, heterostructures including a 2 nm thin, highly V doped layer region
show an anomalous Hall effect of opposite sign compared to previous samples. A
dependency on the thickness and position of the doped layer region is observed,
which indicates that scattering at the interfaces causes contributions to the anomalous
Hall effect of opposite sign compared to bulk scattering effects.
Many interesting phenomena in quantum anomalous Hall insulators as well as axion
insulators are still not unambiguously observed. This includes Majorana bound
states in quantum anomalous Hall insulator/superconductor hybrid systems and
the topological magneto-electric effect in axion insulators. The limited observation
temperature of the quantum anomalous Hall effect of below 1 K could be increased
in 3D topological insulator/magnetic insulator heterostructures which utilize the
magnetic proximity effect.
The main achievement of this thesis is the reproducible growth and characterization
of (V,Bi,Sb)2Te3 layers exhibiting the quantum anomalous Hall effect. The
detailed study of the structural requirements of the quantum anomalous Hall effect
and the observation of the unique axionic scaling behavior in 3D magnetic
topological insulator layers leads to a better understanding of the nature of this
new quantum state. The high-precision measurements of the quantum anomalous
Hall effect reporting the smallest deviation from the von Klitzing constant
are an important step towards the realization of a zero-field quantum resistance
standard.

In the present thesis the MBE growth and sample characterization of HgTe structures is investigated
and discussed. Due to the first experimental discovery of the quantum Spin Hall effect
(QSHE) in HgTe quantum wells, this material system attains a huge interest in the spintronics
society. Because of the long history of growing Hg-based heterostructures here at the Experimentelle
Physik III in Würzburg, there are very good requirements to analyze this material
system more precisely and in new directions. Since in former days only doped HgTe quantum
wells were grown, this thesis deals with the MBE growth in the (001) direction of undoped
HgTe quantum wells, surface located quantum wells and three dimensional bulk layers. All
Hg-based layers were grown on CdTe substrates which generate strain in the layer stack and
provide therefore new physical effects. In the same time, the (001) CdTe growth was investigated
on n-doped (001) GaAs:Si because the Japanese supplier of CdTe substrates had a
supply bottleneck due to the Tohoku earthquake and its aftermath in 2011.
After a short introduction of the material system, the experimental techniques were demonstrated
and explained explicitly. After that, the experimental part of this thesis is displayed.
So, the investigation of the (001) CdTe growth on (001) GaAs:Si is discussed in chapter 4.
Firstly, the surface preparation of GaAs:Si by oxide desorption is explored and analyzed.
Here, rapid thermal desorption of the GaAs oxide with following cool down in Zn atmosphere
provides the best results for the CdTe due to small holes at the surface, while e.g. an atomic
flat GaAs buffer deteriorates the CdTe growth quality. The following ZnTe layer supplies the
(001) growth direction of the CdTe and exhibits best end results of the CdTe for 30 seconds
growth time at a flux ratio of Zn/Te ~ 1/1.2. Without this ZnTe layer, CdTe will grow in the
(111) direction. However, the main investigation is here the optimization of the MBE growth
of CdTe. The substrate temperature, Cd/Te flux ratio and the growth time has to be adjusted
systematically. Therefore, a complex growth process is developed and established. This optimized
CdTe growth process results in a RMS roughness of around 2.5 nm and a FWHM value
of the HRXRD w-scan of 150 arcsec. Compared to the literature, there is no lower FWHM
value traceable for this growth direction. Furthermore, etch pit density measurements show
that the surface crystallinity is matchable with the commercial CdTe substrates (around 1x10^4
cm^(-2)). However, this whole process is not completely perfect and offers still room for improvements.
The growth of undoped HgTe quantum wells was also a new direction in research in contrast
to the previous n-doped grown HgTe quantum wells. Here in chapter 5, the goal of very low
carrier densities was achieved and therefore it is now possible to do transport experiments in
the n - and p - region by tuning the gate voltage. To achieve this high sample quality, very precise
growth of symmetric HgTe QWs and their HRXRD characterization is examined. Here,
the quantum well thickness can now determined accurate to under 0.3 nm. Furthermore, the transport analysis of different quantum well thicknesses shows that the carrier density and
mobility increase with rising HgTe layer thickness. However, it is found out that the band
gap of the HgTe QW closes indirectly at a thickness of 11.6 nm. This is caused by the tensile
strained growth on CdTe substrates. Moreover, surface quantum wells are studied. These
quantum wells exhibit no or a very thin HgCdTe cap. Though, oxidization and contamination
of the surface reduces here the carrier mobility immensely and a HgCdTe layer of around 5 nm
provides the pleasing results for transport experiments with superconductors connected to the
topological insulator [119]. A completely new achievement is the realization of MBE growth
of HgTe quantum wells on CdTe/GaAs:Si substrates. This is attended by the optimization of
the CdTe growth on GaAs:Si. It exposes that HgTe quantum wells grown in-situ on optimized
CdTe/GaAs:Si show very nice transport data with clear Hall plateaus, SdH oscillations, low
carrier densities and carrier mobilities up to 500 000 cm^2/Vs. Furthermore, a new oxide etching
process is developed and analyzed which should serve as an alternative to the standard
HCl process which generates volcano defects at some time. However, during the testing time
the result does not differ in Nomarski, HRXRD, AFM and transport measurements. Here,
long-time tests or etching and mounting in nitrogen atmosphere may provide new elaborate
results.
The main focus of this thesis is on the MBE growth and standard characterization of HgTe bulk
layers and is discussed in chapter 6. Due to the tensile strained growth on lattice mismatched
CdTe, HgTe bulk opens up a band gap of around 22 meV at the G-point and exhibits therefore
its topological surface states. The analysis of surface condition, roughness, crystalline quality,
carrier density and mobility via Nomarski, AFM, XPS, HRXRD and transport measurements
is therefore included in this work. Layer thickness dependence of carrier density and mobility
is identified for bulk layer grown directly on CdTe substrates. So, there is no clear correlation
visible between HgTe layer thickness and carrier density or mobility. So, the carrier density is
almost constant around 1x10^11 cm^(-2) at 0 V gate voltage. The carrier mobility of these bulk
samples however scatters between 5 000 and 60 000 cm^2/Vs almost randomly. Further experiments
should be made for a clearer understanding and therefore the avoidance of unusable
bad samples.But, other topological insulator materials show much higher carrier densities and
lower mobility values. For example, Bi2Se3 exhibits just density values around 1019 cm^(-2)
and mobility values clearly below 5000 cm2/Vs. The carrier density however depends much
on lithography and surface treatment after growth. Furthermore, the relaxation behavior and
critical thickness of HgTe grown on CdTe is determined and is in very good agreement with
theoretical prediction (d_c = 155 nm). The embedding of the HgTe bulk layer between HgCdTe
layers created a further huge improvement. Similar to the quantum well structures the carrier
mobility increases immensely while the carrier density levels at around 1x10^11 cm^(-2) at 0
V gate voltage as well. Additionally, the relaxation behavior and critical thickness of these
barrier layers has to be determined. HgCdTe grown on commercial CdTe shows a behavior as
predicted except the critical thickness which is slightly higher than expected (d_c = 850 nm).
Otherwise, the relaxation of HgCdTe grown on CdTe/GaAs:Si occurs in two parts. The layer
is fully strained up to 250 nm. Between 250 nm and 725 nm the HgCdTe film starts to relax
randomly up to 10 %. The relaxation behavior for thicknesses larger than 725 nm occurs than
linearly to the inverse layer thickness. A explanation is given due to rough interface conditions
and crystalline defects of the CdTe/GaAs:Si compared to the commercial CdTe substrate. HRXRD and AFM data support this statement. Another point is that the HgCdTe barriers protect the active HgTe layer and because of the high carrier mobilities the Hall measurements provide new transport data which have to be interpreted more in detail in the future. In addition, HgTe bulk samples show very interesting transport data by gating the sample from the top and the back. It is now possible to manipulate the carrier densities of the top and bottom surface states almost separately. The back gate consisting of the n-doped GaAs substrate and the thick insulating CdTe buffer can tune the carrier density for Delta(n) ~ 3x10^11 cm^(-2). This is sufficient to tune the Fermi energy from the p-type into the n-type region [138].
In this thesis it is shown that strained HgTe bulk layers exhibit superior transport data by embedding between HgCdTe barrier layers. The n-doped GaAs can here serve as a back gate.
Furthermore, MBE growth of high crystalline, undoped HgTe quantum wells shows also new
and extended transport output. Finally, it is notable that due to the investigated CdTe growth
on GaAs the Hg-based heterostructure MBE growth is partially independent from commercial
suppliers.

Gegenstand dieser Arbeit sind Transportuntersuchungen an nanoelektronischen Bauelementen, wobei der Schwerpunkt in der Analyse von nichtlinearen Transporteigenschaften hybrider Strukturen stand. Zum Einsatz kamen auf GaAs basierende Heterostrukturen mit zum Beispiel kleinen Metallkontakten, die zu Symmetriebrechungen führen. Die Untersuchungen wurden bei tiefen Temperaturen bis hin zu Raumtemperatur durchgeführt. Es kamen zudem magnetische Felder zum Einsatz. So wurden zum einen der asymmetrische Magnetotransport in Nanostrukturen mit asymmetrischer Gateanordnung unter besonderer Berücksichtigung der Phononstreuung analysiert, zum anderen konnte ein memristiver Effekt in InAs basierenden Strukturen studiert werden. Des Weiteren konnte ein beachtlicher Magnetowiderstand in miniaturisierten CrAu-GaAs Bauelementen beobachtet werden, der das Potential besitzt, als Basis für extrem miniaturisierte Sensoren für den Betrieb bei Raumtemperatur eingesetzt zu werden.