72.40.+w Photoconduction and photovoltaic effects
Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Doctoral Thesis (2)
Keywords
- Organische Solarzelle (2)
- Rekombination (2)
- Bathophenanthrolin (1)
- Bilagen-Solarzelle (1)
- C60 (1)
- Diindenoperylen (1)
- Doppeldiode (1)
- Elektrolumineszenz (1)
- Exziton (1)
- Fotovoltaik (1)
Institute
ResearcherID
- D-1250-2010 (1)
Um die Wirkungsgrade organischer Solarzellen weiter zu steigern, ist ein Verständnis der auftretenden Verlustmechanismen entscheidend. Im Vergleich zu anorganischen photovoltaischen Zellen sind in den organischen Halbleitern die durch Absorption erzeugten Elektron-Loch-Paare, die als Exzitonen bezeichnet werden, sehr viel stärker gebunden. Daher müssen sie an einer Heterogrenzfläche, gebildet durch ein Donator- und ein Akzeptormaterial, in freie Ladungsträger getrennt werden. Mit dem erforderlichen Transportweg an die Heterogrenzschicht sind Rekombinationsverluste der exzitonischen Anregungen verbunden, die aus einer Vielzahl unterschiedlicher Prozesse resultieren und einen der Hauptverlustkanäle in organischen Solarzellen darstellen.
Aus diesem Grund wird der Fokus dieser Arbeit auf die Charakterisierung und mögliche Reduzierung solcher exzitonischen Verlustmechanismen gelegt. Als Modellsystem wird dazu eine planare Bilagen-Struktur auf Basis des Donatormaterials Diindenoperylen (DIP) und des Akzeptors Fulleren C60 verwendet. Durch die Kombination von elektrischen und spektroskopischen Messmethoden werden unterschiedliche exzitonische Verlustmechanismen in den aktiven Schichten charakterisiert und die zugrunde liegenden mikroskopischen Ursachen diskutiert. Dazu wird zuerst auf die strukturellen, optischen und elektrischen Eigenschaften von DIP/C60-Solarzellen eingegangen. In einem zweiten Abschnitt werden die mikroskopischen Einflüsse einer Exzitonen blockierenden Lage (EBL, exciton blocking layer) aus Bathophenanthrolin (BPhen) durch eine komplementäre Charakterisierung von Photolumineszenz und elektrischen Parametern der Solarzellen untersucht, wobei auch die Notwendigkeit der EBL zur Unterbindung von Metalleinlagerungen in den aktiven organischen Schichten analysiert wird. Die anschließende Studie der Intensitäts- und Temperaturabhängigkeit der j(U)-Kennlinien gibt Aufschluss über die intrinsischen Zellparameter sowie die Rekombinationsmechanismen von Ladungsträgern in den aktiven Schichten. Ferner werden durch temperaturabhängige spektroskopische Untersuchungen der Photo- und Elektrolumineszenz der Solarzellen Informationen über die elektronischen Zustände der DIP-Schicht erlangt, die für Rekombinationsverluste der generierten Exzitonen verantwortlich sind. Zusätzlich werden Raman-Messungen an den Solarzellen und Einzelschichten diskutiert. In einer abschließenden Studie werden exzitonische Verluste unter Arbeitsbedingungen der Solarzelle durch Ladungsträgerwechselwirkungen in der Donator-Schicht quantifiziert. In dieser Arbeit konnten verschiedene relevante Verlustprozesse in organischen Solarzellen reduziert werden. Durch die Identifizierung der mikroskopischen Ursachen dieser Verluste wurde eine wichtige Voraussetzung für eine weitere Steigerung der Leistungseffizienz geschaffen.
Continuously increasing energy prices have considerably influenced the cost of living over the last decades. At the same time increasingly extreme weather conditions, drought-filled summers as well as autumns and winters with heavier rainfall and worsening storms have been reported. These are possibly the harbingers of the expected approaching global climate change. Considering the depletability of fossil energy sources and a rising distrust in nuclear power, investigations into new and innovative renewable energy sources are necessary to prepare for the coming future.
In addition to wind, hydro and biomass technologies, electricity generated by the direct conversion of incident sunlight is one of the most promising approaches. Since the syntheses and detailed studies of organic semiconducting polymers and fullerenes were intensified, a new kind of solar cell fabrication became conceivable. In addition to classical vacuum deposition techniques, organic cells were now also able to be processed from a solution, even on flexible substrates like plastic, fabric or paper.
An organic solar cell represents a complex electrical device influenced for instance by light interference for charge carrier generation. Also charge carrier recombination and transport mechanisms are important to its performance. In accordance to Coulomb interaction, this results in a specific distribution of the charge carriers and the electric field, which finally yield the measured current-voltage characteristics. Changes of certain parameters result in a complex response in the investigated device due to interactions between the physical processes. Consequently, it is necessary to find a way to generally predict the response of such a device to temperature changes for example.
In this work, a numerical, one-dimensional simulation has been developed based on the drift-diffusion equations for electrons, holes and excitons. The generation and recombination rates of the single species are defined according to a detailed balance approach. The Coulomb interaction between the single charge carriers is considered through the Poisson equation. An analytically non-solvable differential equation system is consequently set-up. With numerical approaches, valid solutions describing the macroscopic processes in organic solar cells can be found. An additional optical simulation is used to determine the spatially resolved charge carrier generation rates due to interference.
Concepts regarding organic semiconductors and solar cells are introduced in the first part of this work. All chapters are based on previous ones and logically outline the basic physics, device architectures, models of charge carrier generation and recombination as well as the mathematic and numerical approaches to obtain valid simulation results.
In the second part, the simulation is used to elaborate issues of current interest in organic solar cell research. This includes a basic understanding of how the open circuit voltage is generated and which processes limit its value. S-shaped current-voltage characteristics are explained assigning finite surface recombination velocities at metal electrodes piling-up local space charges. The power conversion efficiency is identified as a trade-off between charge carrier accumulation and charge extraction. This leads to an optimum of the power conversion efficiency at moderate to high charge carrier mobilities. Differences between recombination rates determined by different interpretations of identical experimental results are assigned to a spatially inhomogeneous recombination, relevant for almost all low mobility semiconductor devices.