## 80.00.00 INTERDISCIPLINARY PHYSICS AND RELATED AREAS OF SCIENCE AND TECHNOLOGY

### Refine

#### Has Fulltext

- yes (26)

#### Is part of the Bibliography

- yes (26)

#### Year of publication

#### Document Type

- Doctoral Thesis (24)
- Preprint (2)

#### Keywords

- Kernspintomografie (10)
- Bildgebendes Verfahren (2)
- Herzmuskel (2)
- Kernspinresonanz (2)
- MRI (2)
- MRT (2)
- Magnetresonanztomographie (2)
- Maschinelles Lernen (2)
- cosmology (2)
- crystallization (2)

#### Institute

- Physikalisches Institut (15)
- Graduate School of Life Sciences (3)
- Theodor-Boveri-Institut für Biowissenschaften (3)
- Institut für Theoretische Physik und Astrophysik (2)
- Fakultät für Chemie und Pharmazie (1)
- Institut für Anorganische Chemie (1)
- Institut für Molekulare Infektionsbiologie (1)
- Institut für Organische Chemie (1)
- Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik) (1)
- Klinik und Poliklinik für Nuklearmedizin (1)

#### Sonstige beteiligte Institutionen

- Universitätsklinikum Würzburg (2)
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut fuer biophysikalische Chemie (1)
- CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - the development agency of the Brazilian Federal Government (1)
- DAAD - Deutscher Akademischer Austauschdienst (1)
- Deutsches Zentrum für Herzinsuffizienz (1)
- Didaktik der Chemie (1)
- Fraunhofer-Institut für Silicatforschung ISC (1)
- MRB Research Center for Magnetic-Resonance-Bavaria (1)

Topological phenomena known from solid state physics have been transferred to a variety of other classical and quantum systems. Due to the equivalence of the Hamiltonian matrix describing tight binding models and the grounded circuit Laplacian describing an electrical circuit we can investigate such phenomena in circuits. By implementing different Hermitian topological models general suggestions on designing those types of circuit are worked out with the aim of minimizing unwanted coupling effects and parasitic admittances in the circuit. Here the existence and the spatial profile of topological states as well as the band structure of the model can be determined.
Due to the complex nature of electric admittance the investigations can be directly expanded to systems with broken Hermiticity. The particular advantages of the experimental investigation of non-exclusively topological phenomena by means of electric circuits come to light in the realization of non-Hermitian and non-linear models. Here we find limitation of the Hermitian bulk-boundary correspondence principle, purely real eigenvalues in non-Hermitian PT-symmetrical systems and edge localization of all eigenstates in non-Hermitian and non-reciprocal systems, which in literature is termed the non-Hermitian skin effect.
When systems obeying non-linear equations are studied, the grounded circuit Laplacian based on the Fourier-transform cannot be applied anymore. By combination of the connectivity of a topological system together with non-linear van der Pol oscillators self-activated and self-sustained topological edge oscillations can be found. These robust high frequency sinusoidal edge oscillations differ significantly from low frequency relaxation oscillations, which can be found in the bulk of the system.

Das Ziel der vorliegenden Arbeit war die Entwicklung neuer, robuster Methoden der Spin-Lock-basierten MRT. Im Fokus stand hierbei vorerst die T1ρ-Quantifizierung des Myokards im Kleintiermodell. Neben der T1ρ-Bildgebung bietet Spin-Locking jedoch zusätzlich die Möglichkeit der Detektion ultra-schwacher, magnetischer Feldoszillationen. Die Projekte und Ergebnisse, die im Rahmen dieses Promotionsvorhabens umgesetzt und erzielt wurden, decken daher ein breites Spektrum der Spin-lock basierten Bildgebung ab und können grob in drei Bereiche unterteilt werden. Im ersten Schritt wurde die grundlegende Pulssequenz des Spin-Lock-Experimentes durch die Einführung des balancierten Spin-Locks optimiert. Der zweite Schritt war die Entwicklung einer kardialen MRT-Sequenz für die robuste Quantifizierung der myokardialen T1ρ-Relaxationszeit an einem präklinischen Hochfeld-MRT. Im letzten Schritt wurden Konzepte der robusten T1ρ-Bildgebung auf die Methodik der Felddetektion mittels Spin-Locking übertragen. Hierbei wurden erste, erfolgreiche Messungen magnetischer Oszillationen im nT-Bereich, welche lokal im untersuchten Gewebe auftreten, an einem klinischen MRT-System im menschlichen Gehirn realisiert.

This work introduced the reader to all relevant fields to tap into an ultrasound-based state of charge estimation and provides a blueprint for the procedure to achieve and test the fundamentals of such an approach. It spanned from an in-depth electrochemical characterization of the studied battery cells over establishing the measurement technique, digital processing of ultrasonic transmission signals, and characterization of the SoC dependent property changes of those signals to a proof of concept of an ultrasound-based state of charge estimation.
The State of the art & theoretical background chapter focused on the battery section on the mechanical property changes of lithium-ion batteries during operation. The components and the processes involved to manufacture a battery cell were described to establish the fundamentals for later interrogation. A comprehensive summary of methods for state estimation was given and an emphasis was laid on mechanical methods, including a critical review of the most recent research on ultrasound-based state estimation. Afterward, the fundamentals of ultrasonic non-destructive evaluation were introduced, starting with the sound propagation modes in isotropic boundary-free media, followed by the introduction of boundaries and non-isotropic structure to finally approach the class of fluid-saturated porous media, which batteries can be counted to. As the processing of the ultrasonic signals transmitted through lithium-ion battery cells with the aim of feature extraction was one of the main goals of this work, the fundamentals of digital signal processing and methods for the time of flight estimation were reviewed and compared in a separate section.
All available information on the interrogated battery cell and the instrumentation was collected in the Experimental methods & instrumentation chapter, including a detailed step-by-step manual of the process developed in this work to create and attach a sensor stack for ultrasonic interrogation based on low-cost off-the-shelf piezo elements.
The Results & discussion chapter opened with an in-depth electrochemical and post-mortem interrogation to reverse engineer the battery cell design and its internal structure. The combination of inductively coupled plasma-optical emission spectrometry and incremental capacity analysis applied to three-electrode lab cells, constructed from the studied battery cell’s materials, allowed to identify the SoC ranges in which phase transitions and staging occur and thereby directly links changes in the ultrasonic signal properties with the state of the active materials, which makes this work stand out among other studies on ultrasound-based state estimation. Additional dilatometer experiments were able to prove that the measured effect in ultrasonic time of flight cannot originate from the thickness increase of the battery cells alone, as this thickness increase is smaller and in opposite direction to the change in time of flight. Therefore, changes in elastic modulus and density have to be responsible for the observed effect.
The construction of the sensor stack from off-the-shelf piezo elements, its electromagnetic shielding, and attachment to both sides of the battery cells was treated in a subsequent section. Experiments verified the necessity of shielding and its negligible influence on the ultrasonic signals. A hypothesis describing the metal layer in the pouch foil to be the transport medium of an electrical coupling/distortion between sending and receiving sensor was formulated and tested. Impedance spectroscopy was shown to be a useful tool to characterize the resonant behavior of piezo elements and ensure the mechanical coupling of such to the surface of the battery cells. The excitation of the piezo elements by a raised cosine (RCn) waveform with varied center frequency in the range of 50 kHz to 250 kHz was studied in the frequency domain and the influence of the resonant behavior, as identified prior by impedance spectroscopy, on waveform and frequency content was evaluated to be uncritical. Therefore, the forced oscillation produced by this excitation was assumed to be mechanically coupled as ultrasonic waves into the battery cells.
The ultrasonic waves transmitted through the battery cell were recorded by piezo elements on the opposing side. A first inspection of the raw, unprocessed signals identified the transmission of two main wave packages and allowed the identification of two major trends: the time of flight of ultrasonic wave packages decreases with the center frequency of the RCn waveform, and with state of charge. These trends were to be assessed further in the subsequent sections. Therefore, methods for the extraction of features (properties) from the ultrasonic signals were established, compared, and tested in a dedicated section. Several simple and advanced thresholding methods were compared with envelope-based and cross-correlation methods to estimate the time of flight (ToF). It was demonstrated that the envelope-based method yields the most robust estimate for the first and second wave package. This finding is in accordance with the literature stating that an envelope-based method is best suited for dispersive, absorptive media [204], to which lithium-ion batteries are counted. Respective trends were already suggested by the heatmap plots of the raw signals vs. RCn frequency and SoC. To enable such a robust estimate, an FIR filter had to be designed to preprocess the transmitted signals and thereby attenuate frequency components that verifiably lead to a distorted shape of the envelope.
With a robust ToF estimation method selected, the characterization of the signal properties ToF and transmitted energy content (EC) was performed in-depth. A study of cycle-to-cycle variations unveiled that the signal properties are affected by a long rest period and the associated relaxation of the multi-particle system “battery cell” to equilibrium. In detail, during cycling, the signal properties don’t reach the same value at a given SoC in two subsequent cycles if the first of the two cycles follows a long rest period. In accordance with the literature, a break-in period, making up for more than ten cycles post-formation, was observed. During this break-in period, the mechanical properties of the system are said to change until a steady state is reached [25]. Experiments at different C-rate showed that ultrasonic signal properties can sense the non-equilibrium state of a battery cell, characterized by an increasing area between charge and discharge curve of the respective signal property vs. SoC plot. This non-equilibrium state relaxes in the rest period following the discharge after the cut-off voltage is reached. The relaxation in the rest period following the charge is much smaller and shows little C-rate dependency as the state is prepared by constant voltage charging at the end of charge voltage. For a purely statistical SoC estimation approach, as employed in this work, where only instantaneous measurements are taken into account and the historic course of the measurement is not utilized as a source of information, the presence of hysteresis and relaxation leads to a reduced estimation accuracy. Future research should address this issue or even utilize the relaxation to improve the estimation accuracy, by incorporating historic information, e.g., by using the derivative of a signal property as an additional feature. The signal properties were then tested for their correlation with SoC as a function of RCn frequency. This allowed identifying trends in the behavior of the signal properties as a function of RCn frequency and C-rate in a condensed fashion and thereby enabled to predict the frequency range, about 50 kHz to 125 kHz, in which the course of the signal properties is best suited for SoC estimation.
The final section provided a proof of concept of the ultrasound-based SoC estimation, by applying a support vector regression (SVR) to before thoroughly studied ultrasonic signal properties, as well as current and battery cell voltage. The included case study was split into different parts that assessed the ability of an SVR to estimate the SoC in a variety of scenarios. Seven battery cells, prepared with sensor stacks attached to both faces, were used to generate 14 datasets. First, a comparison of self-tests, where a portion of a dataset is used for training and another for testing, and cross-tests, which use the dataset of one cell for training and the dataset of another for testing, was performed. A root mean square error (RMSE) of 3.9% to 4.8% SoC and 3.6% to 10.0% SoC was achieved, respectively. In general, it was observed that the SVR is prone to overestimation at low SoCs and underestimation at high SoCs, which was attributed to the pronounced hysteresis and relaxation of the ultrasonic signal properties in this SoC ranges. The fact that higher accuracy is achieved, if the exact cell is known to the model, indicates that a variation between cells exists. This variation between cells can originate from differences in mechanical properties as a result of production variations or from differences in manual sensor placement, mechanical coupling, or resonant behavior of the ultrasonic sensors. To mitigate the effect of the cell-to-cell variations, a test was performed, where the datasets of six out of the seven cells were combined as training data, and the dataset of the seventh cell was used for testing. This reduced the spread of the RMSE from (3.6 - 10.0)% SoC to (5.9 – 8.5)% SoC, respectively, once again stating that a databased approach for state estimation becomes more reliable with a large data basis. Utilizing self-tests on seven datasets, the effect of additional features on the state estimation result was tested. The involvement of an additional feature did not necessarily improve the estimation accuracy, but it was shown that a combination of ultrasonic and electrical features is superior to the training with these features alone. To test the ability of the model to estimate the SoC in unknown cycling conditions, a test was performed where the C-rate of the test dataset was not included in the training data. The result suggests that for practical applications it might be sufficient to perform training with the boundary of the use cases in a controlled laboratory environment to handle the estimation in a broad spectrum of use cases.
In comparison with literature, this study stands out by utilizing and modifying off-the-shelf piezo elements to equip state-of-the-art lithium-ion battery cells with ultrasonic sensors, employing a range of center frequencies for the waveform, transmitted through the battery cell, instead of a fixed frequency and by allowing the SVR to choose the frequency that yields the best result. The characterization of the ultrasonic signal properties as a function of RCn frequency and SoC and the assignment of characteristic changes in the signal properties to electrochemical processes, such as phase transitions and staging, makes this work unique. By studying a range of use cases, it was demonstrated that an improved SoC estimation accuracy can be achieved with the aid of ultrasonic measurements – thanks to the correlation of the mechanical properties of the battery cells with the SoC.

This work deals with the acceleration of cardiovascular MRI for the assessment
of functional information in steady-state contrast and for viability assessment
during the inversion recovery of the magnetization. Two approaches
are introduced and discussed in detail. MOCO-MAP uses an exponential
model to recover dynamic image data, IR-CRISPI, with its low-rank plus
sparse reconstruction, is related to compressed sensing.
MOCO-MAP is a successor to model-based acceleration of parametermapping
(MAP) for the application in the myocardial region. To this end, it
was augmented with a motion correction (MOCO) step to allow exponential
fitting the signal of a still object in temporal direction. Iteratively, this
introduction of prior physical knowledge together with the enforcement of
consistency with the measured data can be used to reconstruct an image
series from distinctly shorter sampling time than the standard exam (< 3 s
opposed to about 10 s). Results show feasibility of the method as well as
detectability of delayed enhancement in the myocardium, but also significant
discrepancies when imaging cardiac function and artifacts caused already by
minor inaccuracy of the motion correction.
IR-CRISPI was developed from CRISPI, which is a real-time protocol
specifically designed for functional evaluation of image data in steady-state
contrast. With a reconstruction based on the separate calculation of low-rank
and sparse part, it employs a softer constraint than the strict exponential
model, which was possible due to sufficient temporal sampling density via
spiral acquisition. The low-rank plus sparse reconstruction is fit for the use on
dynamic and on inversion recovery data. Thus, motion correction is rendered
unnecessary with it.
IR-CRISPI was equipped with noise suppression via spatial wavelet filtering.
A study comprising 10 patients with cardiac disease show medical
applicability. A comparison with performed traditional reference exams offer
insight into diagnostic benefits. Especially regarding patients with difficulty
to hold their breath, the real-time manner of the IR-CRISPI acquisition provides
a valuable alternative and an increase in robustness.
In conclusion, especially with IR-CRISPI in free breathing, a major acceleration
of the cardiovascular MR exam could be realized. In an acquisition
of less than 100 s, it not only includes the information of two traditional
protocols (cine and LGE), which take up more than 9.6 min, but also allows
adjustment of TI in retrospect and yields lower artifact level with similar
image quality.

X-ray dark-field imaging allows to resolve the conflict between the demand for centimeter scaled fields of view and the spatial resolution required for the characterization of fibrous materials structured on the micrometer scale. It draws on the ability of X-ray Talbot interferometers to provide full field images of a sample's ultra small angle scattering properties, bridging a gap of multiple orders of magnitude between the imaging resolution and the contrasted structure scale. The correspondence between shape anisotropy and oriented scattering thereby allows to infer orientations within a sample's microstructure below the imaging resolution. First demonstrations have shown the general feasibility of doing so in a tomographic fashion, based on various heuristic signal models and reconstruction approaches. Here, both a verified model of the signal anisotropy and a reconstruction technique practicable for general imaging geometries and large tensor valued volumes is developed based on in-depth reviews of dark-field imaging and tomographic reconstruction techniques.
To this end, a wide interdisciplinary field of imaging and reconstruction methodologies is revisited. To begin with, a novel introduction to the mathematical description of perspective projections provides essential insights into the relations between the tangible real space properties of cone beam imaging geometries and their technically relevant description in terms of homogeneous coordinates and projection matrices. Based on these fundamentals, a novel auto-calibration approach is developed, facilitating the practical determination of perspective imaging geometries with minimal experimental constraints. A corresponding generalized formulation of the widely employed Feldkamp algorithm is given, allowing fast and flexible volume reconstructions from arbitrary tomographic imaging geometries. Iterative reconstruction techniques are likewise introduced for general projection geometries, with a particular focus on the efficient evaluation of the forward problem associated with tomographic imaging. A highly performant 3D generalization of Joseph's classic linearly interpolating ray casting algorithm is developed to this end and compared to typical alternatives. With regard to the anisotropic imaging modality required for tensor tomography, X-ray dark-field contrast is extensively reviewed. Previous literature is brought into a joint context and nomenclature and supplemented by original work completing a consistent picture of the theory of dark-field origination. Key results are explicitly validated by experimental data with a special focus on tomography as well as the properties of anisotropic fibrous scatterers. In order to address the pronounced susceptibility of interferometric images to subtle mechanical imprecisions, an efficient optimization based evaluation strategy for the raw data provided by Talbot interferometers is developed. Finally, the fitness of linear tensor models with respect to the derived anisotropy properties of dark-field contrast is evaluated, and an iterative scheme for the reconstruction of tensor valued volumes from projection images is proposed. The derived methods are efficiently implemented and applied to fiber reinforced plastic samples, imaged at the ID19 imaging beamline of the European Synchrotron Radiation Facility. The results represent unprecedented demonstrations of X-ray dark-field tensor tomography at a field of view of 3-4cm, revealing local fiber orientations of both complex shaped and low-contrast samples at a spatial resolution of 0.1mm in 3D. The results are confirmed by an independent micro CT based fiber analysis.

In this view point we do not change cosmology after the hot fireball starts (hence agrees well with observation), but the changed start suggested and resulting later implications lead to an even better fit with current observations (voids, supercluster and galaxy formation; matter and no antimatter) than the standard model with big bang and inflation: In an eternal ocean of qubits, a cluster of qubits crystallizes to defined bits. The universe does not jump into existence (“big bang”) but rather you have an eternal ocean of qubits in free super-position of all their quantum states (of any dimension, force field and particle type) as permanent basis. The undefined, boiling vacuum is the real “outside”, once you leave our everyday universe. A set of n Qubits in the ocean are “liquid”, in very undefined state, they have all their m possibilities for quantum states in free superposition. However, under certain conditions the qubits interact, become defined, and freeze out, crystals form and give rise to a defined, real world with all possible time series and world lines. GR holds only within the crystal. In our universe all n**m quantum possibilities are nicely separated and crystallized out to defined bit states: A toy example with 6 qubits each having 2 states illustrates, this is completely sufficient to encode space using 3 bits for x,y and z, 1 bit for particle type and 2 bits for its state. Just by crystallization, space, particles and their properties emerge from the ocean of qubits, and following the arrow of entropy, time emerges, following an arrow of time and expansion from one corner of the toy universe to everywhere else. This perspective provides time as emergent feature considering entropy: crystallization of each world line leads to defined world lines over their whole existence, while entropy ensures direction of time and higher representation of high entropy states considering the whole crystal and all slices of world lines. The crystal perspective is also economic compared to the Everett-type multiverse, each qubit has its m quantum states and n qubits interacting forming a crystal and hence turning into defined bit states has only n**m states and not more states. There is no Everett-type world splitting with every decision but rather individual world trajectories reside in individual world layers of the crystal. Finally, bit-separated crystals come and go in the qubit ocean, selecting for the ability to lay seeds for new crystals. This self-organizing reproduction selects over generations also for life-friendliness. Mathematical treatment introduces quantum action theory as a framework for a general lattice field theory extending quantum chromo dynamics where scalar fields for color interaction and gravity have to be derived from the permeating qubit-interaction field. Vacuum energy should get appropriately low by the binding properties of the qubit crystal. Connections to loop quantum gravity, string theory and emergent gravity are discussed. Standard physics (quantum computing; crystallization, solid state physics) allow validation tests of this perspective and will extend current results.

We employ the AdS/CFT correspondence and hydrodynamics to analyze the transport properties of \(2+1\) dimensional electron fluids. In this way, we use theoretical methods from both condensed matter and high-energy physics to derive tangible predictions that are directly verifiable in experiment.
The first research topic we consider is strongly-coupled electron fluids. Motivated by early results by Gurzhi on the transport properties of weakly coupled fluids, we consider whether similar properties are manifest in strongly coupled fluids. More specifically, we focus on the hydrodynamic tail of the Gurzhi effect: A decrease in fluid resistance with increasing temperature due to the formation of a Poiseuille flow of electrons in the sample. We show that the hydrodynamic tail of the Gurzhi effect is also realized in strongly coupled and fully relativistic fluids, but with modified quantitative features. Namely, strongly-coupled fluids always exhibit a smaller resistance than weakly coupled ones and are, thus, far more efficient conductors. We also suggest that the coupling dependence of the resistance can be used to measure the coupling strength of the fluid. In view of these measurements, we provide analytical results for the resistance as a function of the shear viscosity over entropy density \(\eta/s\) of the fluid. \(\eta/s\) is itself a known function of the coupling strength in the weak and infinite coupling limits.
In further analysis for strongly-coupled fluids, we propose a novel strongly coupled Dirac material based on a kagome lattice, Scandium-substituted Herbertsmithite (ScHb). The large coupling strength of this material, as well as its Dirac nature, provides us with theoretical and experimental access to non-perturbative relativistic and quantum critical physics. A highly suitable method for analyzing such a material's transport properties is the AdS/CFT correspondence. Concretely, using AdS/CFT we derive an estimate for ScHb's \(\eta/s\) and show that it takes a value much smaller than that observed in weakly coupled materials. In turn, the smallness of \(\eta/s\) implies that ScHb's Reynolds number, \(Re\), is large. In fact, \(Re\) is large enough for turbulence, the most prevalent feature of fluids in nature, to make its appearance for the first time in electronic fluids.
Switching gears, we proceed to the second research topic considered in this thesis: Weakly coupled parity-breaking electron fluids. More precisely, we analyze the quantitative and qualitative changes to the classical Hall effect, for electrons propagating hydrodynamically in a lead. Apart from the Lorentz force, a parity-breaking fluid's motion is also impacted by the Hall-viscous force; the shear-stress force induced by the Hall-viscosity. We show that the interplay of these two forces leads to a hydrodynamic Hall voltage with non-linear dependence on the magnetic field. More importantly, the Lorentz and Hall-viscous forces become equal at a non-vanishing magnetic field, leading to a trivial hydrodynamic Hall voltage. Moreover, for small magnetic fields we provide analytic results for the dependence of the hydrodynamic Hall voltage on all experimentally-tuned parameters of our simulations, such as temperature and density. These dependences, along with the zero of the hydrodynamic Hall voltage, are distinct features of hydrodynamic transport and can be used to verify our predictions in experiments.
Last but not least, we consider how a distinctly electronic property, spin, can be included into the hydrodynamic framework. In particular, we construct an effective action for non-dissipative spin hydrodynamics up to first order in a suitably defined derivative expansion. We also show that interesting spin-transport effects appear at second order in the derivative expansion. Namely, we show that the fluid's rotation polarizes its spin. This is the hydrodynamic manifestation of the Barnett effect and provides us with an example of hydrodynamic spintronics.
To conclude this thesis, we discuss several possible extensions of our research, as well as proposals for research in related directions.

Our universe may have started by Qubit decoherence:
In quantum computers, qubits have all their states undefined during calculation and become defined as output (“decoherence”). We study the transition from an uncontrolled, chaotic quantum vacuum (“before”) to a clearly interacting “real world”. In such a cosmology, the Big Bang singularity is replaced by a condensation event of interacting strings. This triggers a crystallization process. This avoids inflation, not fitting current observations: increasing long-range interactions limit growth and crystal symmetries ensure the same laws of nature and basic symmetries over the whole crystal. Tiny mis-arrangements provide nuclei of superclusters and galaxies and crystal structure allows arrangement of dark (halo regions) and normal matter (galaxy nuclei) for galaxy formation. Crystals come and go: an evolutionary cosmology is explored: entropic forces from the quantum soup “outside” of the crystal try to dissolve it. This corresponds to dark energy and leads to a “big rip” in 70 Gigayears. Selection for best growth and condensation events over generations of crystals favors multiple self-organizing processes within the crystal including life or even conscious observers in our universe. Philosophically this theory shows harmony with nature and replaces absurd perspectives of current cosmology.
Independent of cosmology, we suggest that a “real world” (so our everyday macroscopic world) happens only inside a crystal. “Outside” there is wild quantum foam and superposition of all possibilities. In our crystallized world the vacuum no longer boils but is cooled down by the crystallization event, space-time exists and general relativity holds. Vacuum energy becomes 10**20 smaller, exactly as observed in our everyday world. We live in a “solid” state, within a crystal, the n quanta which build our world have all their different m states nicely separated. There are only nm states available for this local “multiverse”. The arrow of entropy for each edge of the crystal forms one fate, one world-line or clear development of our world, while layers of the crystal are different system states. Mathematical leads from loop quantum gravity (LQG) point to required interactions and potentials. Interaction potentials for strings or loop quanta of any dimension allow a solid, decoherent state of quanta challenging to calculate. However, if we introduce here the heuristic that any type of physical interaction of strings corresponds just to a type of calculation, there is already since 1898 the Hurwitz theorem showing that then only 1D, 2D, 4D and 8D (octonions) allow complex or hypercomplex number calculations. No other hypercomplex numbers and hence dimensions or symmetries are possible to allow calculations without yielding divisions by zero. However, the richest solution allowed by the Hurwitz theorem, octonions, is actually the observed symmetry of our universe, E8. Standard physics such as condensation, crystallization and magnetization but also solid-state physics and quantum computing allow us to show an initial mathematical treatment of our new theory by LQG to describe the cosmological state transformations by equations, and, most importantly, point out routes to parametrization of free parameters looking at testable phenomena, experiments and formulas that describe processes of crystallization, protein folding, magnetization, solid-state physics and quantum computing. This is presented here for LQG, for string theory it would be more elegant but was too demanding to be shown here.
Note: While my previous Opus server preprint “A new cosmology of a crystallization process (decoherence) from the surrounding quantum soup provides heuristics to unify general relativity and quantum physics by solid state physics” (https://doi.org/10.25972/OPUS-23076) deals with the same topics and basic formulas, this new version is improved: clearer in title, better introduction, more stringent in its mathematics and improved discussion of the implications including quantum computing, hints for parametrization and connections to LQG and other current cosmological efforts.
This 5th of June 2021 version is again an OPUS preprint, but this will next be edited for Archives https://arxiv.org.

In order to facilitate the human energy needs with renewable energy sources in the future, new concepts and ideas for the electricity generation are needed. Solar cells based on metal halide perovskite semiconductors represent a promising approach to address these demands in both single-junction and tandem configurations with existing silicon technology. Despite intensive research, however, many physical properties and the working principle of perovskite PVs are still not fully understood. In particular, charge carrier recombination losses have so far mostly been studied on pure films not embedded in a complete solar cell. This thesis aimed for the identification and quantification of charge carrier recombination dynamics in fully working devices under conditions corresponding to those under real operation. To study different PV systems, transient electrical methods, more precisely Open-Circuit Voltage Decay (OCVD), Transient Photovoltage (TPV) and Charge Extraction (CE), were applied. Whereas OCVD and TPV provide information about the recombination lifetime, CE allows to access the charge carrier density at a specific illumination intensity. The benefit of combining these different methods is that the obtained quantities can not only be related to the Voc but also to each other, thus enabling to determine also the dominant recombination mechanisms.The aim of this thesis is to contribute to a better understanding of recombination losses in fully working perovskite solar cells and the experimental techniques which are applied to determine these losses.

Der Ausbau der regenerativen Energiequellen führt vermehrt zu unvorhersehbaren Schwankungen der erzeugten Leistung, da Windkraft und Photovoltaik von natürlichen Bedingungen abhängen. Gerade Kurzzeitfluktuationen im Sekunden- bis Minutenbereich, die bei Solarzellen durch die Verschattung von vorüberziehenden Wolken zustande kommen, wird bislang wenig Beachtung geschenkt. Kurzzeitspeicher müssen eine hohe Zyklenstabilität aufweisen, um zur Glättung dieser Leistungsfluktuationen in Frage zu kommen. Im Rahmen der vorliegenden Dissertation wurden elektrochemische Doppelschichtkondensatoren für die Kopplung mit Siliziumsolarzellen und organischen Solarmodulen mit Hilfe von Simulationen und Messungen untersucht. Zusätzlich wurden grundlegende Fragestellungen zur Prozessierung und Alterung von Doppelschichtkondensatoren im Hinblick auf ein in der Literatur bereits diskutiertes System betrachtet, das beide Komponenten in einem Bauteil integriert - den sogenannten photocapacitor.
Um die Druckbarkeit des gesamten elektrochemischen Doppelschichtkondensators zu ermöglichen, wurde der konventionell verwendete Flüssigelektrolyt durch einen Polymer-Gel-Elektrolyten auf Basis von Polyvinylalkohol und einer Säure ersetzt. Durch eine Verbesserung der Prozessierung konnte ein größerer Anteil der spezifischen Fläche der porösen Kohlenstoffelektroden vom Elektrolyten benetzt und somit zur Speicherung genutzt werden. Die Untersuchungen zeigen, dass mit Polymer-Gel-Elektrolyten ähnliche Kapazitäten erreicht werden wie mit Flüssigelektrolyten. Im Hinblick auf die Anwendung im gekoppelten System muss der elektrochemische Doppelschichtkondensator den gleichen Umweltbedingungen hinsichtlich Temperatur und Luftfeuchte standhalten wie die Solarzelle. Hierzu wurden umfangreiche Alterungstests durchgeführt und festgestellt, dass die Kapazität zwar bei Austrocknung des wasserhaltigen Polymer-Gel-Elektrolyten sinkt, bei einer Wiederbefeuchtung aber auch eine Regeneration des Speichers erfolgt.
Zur passenden Auslegung des elektrochemischen Doppelschichtkondensators wurde eine detaillierte Analyse der Leistungsfluktuationen durchgeführt, die mit einem eigens entwickelten MPP-Messgerät an organischen Solarmodulen gemessen wurden. Anhand der Daten wurde analysiert, welche Energiemengen für welche Zeit im Kurzzeitspeicher zwischengespeichert werden müssen, um eine effiziente Glättung der ins Netz einzuspeisenden Leistung zu erreichen. Aus der Statistik der Fluktuationen wurde eine Kapazität berechnet, die als Richtwert in die Simulationen einging und dann mit anderen Kapazitäten verglichen wurde. Neben einem idealen MPP-Tracking für verschiedene Arten von Solarzellen und Beleuchtungsprofilen konnte die Simulation auch die Kopplung aus Solarzelle und elektrochemischem Doppelschichtkondensator mit zwei verschiedenen Betriebsstrategien nachbilden. Zum einen wurde ein fester Lastwiderstand genutzt, zum anderen eine Zielspannung für den Kurzzeitspeicher und somit auch die Solarzelle vorgegeben und der Lastwiderstand variabel so angepasst, dass die Zielspannung gehalten wird. Beide Betriebsmethoden haben einen Energieverlust gegenüber der MPP-getrackten Solarzelle zu verzeichnen, führen aber zu einer Glättung der Leistung des gekoppelten Systems. Die Simulation konnte für Siliziumsolarzellen mit einem Demonstratorversuch im Labor und für organische Solarzellen unter realen Bedingungen validiert werden.
Insgesamt ergibt sich eine vielversprechende Glättung der Leistungsfluktuationen von Solarzellen durch den Einsatz von elektrochemischen Doppelschichtkondensatoren.