82.56.-b Nuclear magnetic resonance (see also 33.25.+k Nuclear resonance and relaxation in atomic and molecular physics; 76.60.-k Nuclear magnetic resonance and relaxation; 76.70.-r Magnetic double resonances and cross effects in condensed matter)
Refine
Has Fulltext
- yes (2)
Is part of the Bibliography
- yes (2)
Document Type
- Doctoral Thesis (2)
Language
- German (2)
Keywords
- NMR-Bildgebung (2)
- Biologisches System (1)
- Durchblutung (1)
- Functional-NMR Tumor Oxygenation Perfusion Simulation (1)
- Funktionelle NMR-Tomographie (1)
- Herz (1)
- Kernspinrelaxation (1)
- MR (1)
- Magnetische Kernresonanz (1)
- Magnetresonanz (1)
Institute
Ein Teil dieser Arbeit bestand in der Entwicklung und Etablierung von Methoden zur nichtinvasiven Erfassung von radiobiologisch relevanten Parametern des Tumormikromilieus mit der Magnet-Resonanz-Tomographie. Dabei wurden die Tumorperfusion und die Reoxygenierung des Tumors bei Beatmung mit Carbogengas als strahlentherapeutisch prognostisch relevante und vor allem auch beeinflussbare Parameter des Tumors untersucht. Die Untersuchungen fanden an einem Xenograft Modell von neun verschiedenen standardisierten humanen Tumorlinien statt, die auf Oberschenkel von Mäusen transplantiert wurden. Als Teil eines multiinstitutionellen Verbundprojekts wurden parallel zu den NMR-Untersuchungen dieselben Tumorlinien mit verschiedenen Methoden der Histologie und Immunhistologie untersucht. Die Erhebung und Sammlung von einer solch großen Anzahl an Tumordaten, die mit den verschiedensten Untersuchungsmethoden an denselben Tumorlinien erfasst wurden bot eine einmalige Möglichkeit, die einzelnen Tumorparameter miteinander zu korrelieren. Durch die Vielzahl an hier untersuchten Tumorlinien waren aussagekräftige Korrelationen der erfassten Parameter (Perfusion, Reoxygenierung, Laktatverteilung, TCD50, Hypoxie, Blutgefäßdichte) möglich. Damit konnten die Zusammenhänge der einzelnen Parameter des Tumormikromilieus genauer untersucht werden, wodurch das Verständnis über die Vorgänge im Tumor weiter verbessert werden konnte. Mittels quantitativer Messung des oxygenierungssensitiven NMR-Parameters T2* wurde die individuelle Reaktion der Tumoren auf die Atmung von Carbogengas ortsaufgelöst erfasst. Dabei stellte sich die Reoxygenierung als sehr guter prognostischer Faktor für die Strahlentherapie heraus. Durch die Reoxygenierungsmessung kann somit festgestellt werden, ob ein Patient von einer Beatmung mit Carbogengas während der Strahlentherapie profitiert. Zur nichtinvasiven Erfassung der nativen Mikrozirkulation der Tumoren wurden Spin-Labeling-Techniken eingesetzt, die ortsaufgelöste Perfusionskarten über den NMR-Relaxationsparameter T1 liefern. Die Tumorperfusion wurde dabei nicht als Absolutwert berechnet, sondern als Relativwert bezüglich der Muskelperfusion angegeben, um unabhängig vom aktuellen Zustand des Herz-Kreislauf-System des Wirtstieres zu sein. Zwischen den einzelnen Tumorlinien konnten mit dieser Methode signifikante Unterschiede in der Tumormikrozirkulation festgestellt werden. Die Tumorperfusion liegt bei allen untersuchten Linien unter dem Wert der Muskelperfusion. Im zweiten Teil der Arbeit wurde ein Fitalgorithmus entworfen und implementiert, der es ermöglicht, völlig neue Messsequenzen zu entwickeln, die nicht an die Restriktionen der analytischen Fitmethoden gebunden sind. So können z.B. die Schaltzeitpunkte der Pulse zur Abtastung einer Relaxationskurve frei gewählt werden. Auch muss das Spinsystem nicht gegen einen Gleichgewichtswert laufen um die Relaxationszeiten bestimmen zu können. Dieser Algorithmus wurde in Simulationen mit dem Standardverfahren zur T1-Akquisition verglichen. Dabei erwies sich diese Fitmethode als stabiler als das Standardmessverfahren. Auch an realen Messungen an Phantomen und in vivo liefert der Algorithmus zuverlässig korrekte Werte. Die im ersten Teil dieser Arbeit entwickelten Verfahren zur nichtinvasiven Erfassung strahlentherapeutisch relevanter Parameter sollen letztlich in die klinische Situation auf den Menschen übertragen werden. Durch die geringere magnetische Feldstärke und das damit verbundene niedrigere SNR der klinischen Magnettomographen muss jedoch die Anzahl der Mittelungen erhöht werden, um die gleiche Qualität der Messdaten zu erhalten. Dies führt aber schnell zu sehr langen Messzeiten, die einem Patienten nicht zugemutet werden können. Um die Messzeit zu verkürzen wurde eine Messsequenz, aufbauend auf den erarbeiteten Fitalgorithmus entwickelt, die es ermöglicht, die T1- und T2*-Relaxationszeit simultan und in der Dauer einer herkömmlichen T1-Messequenz zu akquirieren. Neben der Messzeitverkürzung ist dieses Messverfahren weniger anfällig gegen Bewegungsartefakte, die bei der räumlichen Korrelation von einzeln nacheinander aufgenommenen T1- und T2*-Relaxationszeitkarten auftreten, da diese in einem Datensatz akquiriert wurden und somit exakt übereinander zu liegen kommen.
Die Dynamik der Kernspindephasierung in lebenden Systemen enhält relevante Informationen über biologisch wichtige Parameter, wie Sauerstoffversorgung, Mikrozirkulation, Diffusion etc.. Ursächlich für die Dephasierung sind Interaktionen des Spins mit fluktuierenden Magnetfeldern. Notwendig sind also Modelle, welche diese Interaktionen mit den biologisch relevanten Parametern in Beziehung setzen. Problematisch ist, daß fast alle analytische Ansätze nur in extremen Dynamikbereichen der Störfeldfluktuationen (motional narrowing - , static dephasing limit) gültig sind. In dieser Arbeit zeigen wir einen Ansatz, mit dem man die Dynamik der Störfeldfluktuationen erheblich vereinfachen und trotzdem noch deren wesentliche Eigenschaften beibehalten kann. Dieser Ansatz ist nicht auf einen speziellen Dynamikbereich festgelegt. Angewendet wird dieses Näherungsverfahren zur Beschreibung der Spin Dephasierung im Herzmuskel. Die Relaxationszeiten erhält man als Funktion der Kapillardichte und Blutoxygenierung. Vergleiche mit numerisch errechneten Daten anderer, eigenen Messungen am menschlichen Herzen und experimentellen Befunden in der Literatur, bestätigen die theoretischen Vorhersagen.