## 510 Mathematik

### Refine

#### Has Fulltext

- yes (196)

#### Is part of the Bibliography

- yes (196)

#### Year of publication

#### Document Type

- Doctoral Thesis (113)
- Journal article (64)
- Book (6)
- Other (3)
- Report (3)
- Conference Proceeding (2)
- Preprint (2)
- Book article / Book chapter (1)
- Master Thesis (1)
- Review (1)

#### Keywords

- Optimale Kontrolle (8)
- Nash-Gleichgewicht (7)
- Optimierung (7)
- Extremwertstatistik (6)
- Newton-Verfahren (6)
- Nichtlineare Optimierung (6)
- Mathematik (5)
- optimal control (5)
- Differentialgleichung (4)
- MPEC (4)

#### Institute

#### Sonstige beteiligte Institutionen

#### ResearcherID

- B-4606-2017 (1)

For a connected real Lie group G we consider the canonical standard-ordered star product arising from the canonical global symbol calculus based on the half-commutator connection of G. This star product trivially converges on polynomial functions on T\(^*\)G thanks to its homogeneity. We define a nuclear Fréchet algebra of certain analytic functions on T\(^*\)G, for which the standard-ordered star product is shown to be a well-defined continuous multiplication, depending holomorphically on the deformation parameter \(\hbar\). This nuclear Fréchet algebra is realized as the completed (projective) tensor product of a nuclear Fréchet algebra of entire functions on G with an appropriate nuclear Fréchet algebra of functions on \({\mathfrak {g}}^*\). The passage to the Weyl-ordered star product, i.e. the Gutt star product on T\(^*\)G, is shown to preserve this function space, yielding the continuity of the Gutt star product with holomorphic dependence on \(\hbar\).

Let (ϕ\(_t\))\(_{t≥0}\) be a semigroup of holomorphic functions in the unit disk \(\mathbb {D}\) and K a compact subset of \(\mathbb {D}\). We investigate the conditions under which the backward orbit of K under the semigroup exists. Subsequently, the geometric characteristics, as well as, potential theoretic quantities for the backward orbit of K are examined. More specifically, results are obtained concerning the asymptotic behavior of its hyperbolic area and diameter, the harmonic measure and the capacity of the condenser that K forms with the unit disk.

This paper studies differential graded modules and representations up to homotopy of Lie n-algebroids, for general \(n\in {\mathbb {N}}\). The adjoint and coadjoint modules are described, and the corresponding split versions of the adjoint and coadjoint representations up to homotopy are explained. In particular, the case of Lie 2-algebroids is analysed in detail. The compatibility of a Poisson bracket with the homological vector field of a Lie n-algebroid is shown to be equivalent to a morphism from the coadjoint module to the adjoint module, leading to an alternative characterisation of non-degeneracy of higher Poisson structures. Moreover, the Weil algebra of a Lie n-algebroid is computed explicitly in terms of splittings, and representations up to homotopy of Lie n-algebroids are used to encode decomposed VB-Lie n-algebroid structures on double vector bundles.

Simple closed formulas for endpoint geodesics on Graßmann manifolds are presented. In addition to realizing the shortest distance between two points, geodesics are also essential tools to generate more sophisticated curves that solve higher order interpolation problems on manifolds. This will be illustrated with the geometric de Casteljau construction offering an excellent alternative to the variational approach which gives rise to Riemannian polynomials and splines.

On-orbit verification of RL-based APC calibrations for micrometre level microwave ranging system
(2023)

Micrometre level ranging accuracy between satellites on-orbit relies on the high-precision calibration of the antenna phase center (APC), which is accomplished through properly designed calibration maneuvers batch estimation algorithms currently. However, the unmodeled perturbations of the space dynamic and sensor-induced uncertainty complicated the situation in reality; ranging accuracy especially deteriorated outside the antenna main-lobe when maneuvers performed. This paper proposes an on-orbit APC calibration method that uses a reinforcement learning (RL) process, aiming to provide the high accuracy ranging datum for onboard instruments with micrometre level. The RL process used here is an improved Temporal Difference advantage actor critic algorithm (TDAAC), which mainly focuses on two neural networks (NN) for critic and actor function. The output of the TDAAC algorithm will autonomously balance the APC calibration maneuvers amplitude and APC-observed sensitivity with an object of maximal APC estimation accuracy. The RL-based APC calibration method proposed here is fully tested in software and on-ground experiments, with an APC calibration accuracy of less than 2 mrad, and the on-orbit maneuver data from 11–12 April 2022, which achieved 1–1.5 mrad calibration accuracy after RL training. The proposed RL-based APC algorithm may extend to prove mass calibration scenes with actions feedback to attitude determination and control system (ADCS), showing flexibility of spacecraft payload applications in the future.

We extend Bourgain’s bound for the order of growth of the Riemann zeta function on the critical line to Lerch zeta functions. More precisely, we prove L(λ, α, 1/2 + it) ≪ t\(^{13/84+ϵ}\) as t → ∞. For both, the Riemann zeta function as well as for the more general Lerch zeta function, it is conjectured that the right-hand side can be replaced by t\(^ϵ\) (which is the so-called Lindelöf hypothesis). The growth of an analytic function is closely related to the distribution of its zeros.

We give a collection of 16 examples which show that compositions \(g\) \(\circ\) \(f\) of well-behaved functions \(f\) and \(g\) can be badly behaved. Remarkably, in 10 of the 16 examples it suffices to take as outer function \(g\) simply a power-type or characteristic function. Such a collection of examples may serve as a source of exercises for a calculus course.

For a graph \(\Gamma\) , let K be the smallest field containing all eigenvalues of the adjacency matrix of \(\Gamma\) . The algebraic degree \(\deg (\Gamma )\) is the extension degree \([K:\mathbb {Q}]\). In this paper, we completely determine the algebraic degrees of Cayley graphs over abelian groups and dihedral groups.