## 510 Mathematik

### Refine

#### Has Fulltext

- yes (139)

#### Is part of the Bibliography

- yes (139)

#### Year of publication

#### Document Type

- Doctoral Thesis (99)
- Journal article (23)
- Book (6)
- Other (3)
- Conference Proceeding (2)
- Preprint (2)
- Report (2)
- Book article / Book chapter (1)
- Master Thesis (1)

#### Keywords

- Nash-Gleichgewicht (7)
- Extremwertstatistik (6)
- Newton-Verfahren (6)
- Nichtlineare Optimierung (6)
- Optimale Kontrolle (6)
- Mathematik (5)
- Optimierung (5)
- optimal control (5)
- Differentialgleichung (4)
- MPEC (4)

#### Institute

#### Sonstige beteiligte Institutionen

#### ResearcherID

- B-4606-2017 (1)

We are interested in studying a system coupling the compressible Navier–Stokes equations with an elastic structure located at the boundary of the fluid domain. Initially the fluid domain is rectangular and the beam is located on the upper side of the rectangle. The elastic structure is modeled by an Euler–Bernoulli damped beam equation. We prove the local in time existence of strong solutions for that coupled system.

A basic mental model (BMM—in German ‘Grundvorstellung’) of a mathematical concept is a content-related interpretation that gives meaning to this concept. This paper defines normative and individual BMMs and concretizes them using the integral as an example. Four BMMs are developed about the concept of definite integral, sometimes used in specific teaching approaches: the BMMs of area, reconstruction, average, and accumulation. Based on theoretical work, in this paper we ask how these BMMs could be identified empirically. A test instrument was developed, piloted, validated and applied with 428 students in first-year mathematics courses. The test results show that the four normative BMMs of the integral can be detected and separated empirically. Moreover, the results allow a comparison of the existing individual BMMs and the requested normative BMMs. Consequences for future developments are discussed.

A Lagrange multiplier method for semilinear elliptic state constrained optimal control problems
(2020)

In this paper we apply an augmented Lagrange method to a class of semilinear ellip-tic optimal control problems with pointwise state constraints. We show strong con-vergence of subsequences of the primal variables to a local solution of the original problem as well as weak convergence of the adjoint states and weak-* convergence of the multipliers associated to the state constraint. Moreover, we show existence of stationary points in arbitrary small neighborhoods of local solutions of the original problem. Additionally, various numerical results are presented.

We consider a class of “wild” initial data to the compressible Euler system that give rise to infinitely many admissible weak solutions via the method of convex integration. We identify the closure of this class in the natural L1-topology and show that its complement is rather large, specifically it is an open dense set.

In this paper we introduce a theoretical framework concerned with fostering functional thinking in Grade 8 students by utilizing digital technologies. This framework is meant to be used to guide the systematic variation of tasks for implementation in the classroom while using digital technologies. Examples of problems and tasks illustrate this process. Additionally, results of an empirical investigation with Grade 8 students, which focusses on the students’ skills with digital technologies, how they utilize these tools when engaging with the developed tasks, and how they influence their functional thinking, are presented. The research aim is to investigate in which way tasks designed according to the theoretical framework could promote functional thinking while using digital technologies in the sense of the operative principle. The results show that the developed framework — Function-Operation-Matrix — is a sound basis for initiating students’ actions in the sense of the operative principle, to foster the development of functional thinking in its three aspects, namely, assignment, co-variation and object, and that digital technologies can support this process in a meaningful way.

Functions of bounded variation are most important in many fields of mathematics. This thesis investigates spaces of functions of bounded variation with one variable of various types, compares them to other classical function spaces and reveals natural “habitats” of BV-functions. New and almost comprehensive results concerning mapping properties like surjectivity and injectivity, several kinds of continuity and compactness of both linear and nonlinear operators between such spaces are given. A new theory about different types of convergence of sequences of such operators is presented in full detail and applied to a new proof for the continuity of the composition operator in the classical BV-space. The abstract results serve as ingredients to solve Hammerstein and Volterra integral equations using fixed point theory. Many criteria guaranteeing the existence and uniqueness of solutions in BV-type spaces are given and later applied to solve boundary and initial value problems in a nonclassical setting.
A big emphasis is put on a clear and detailed discussion. Many pictures and synoptic tables help to visualize and summarize the most important ideas. Over 160 examples and counterexamples illustrate the many abstract results and how delicate some of them are.

In the present thesis we investigate algebraic and arithmetic properties of graph spectra. In particular, we study the algebraic degree of a graph, that is the dimension of the splitting field of the characteristic polynomial of the associated adjacency matrix over the rationals, and examine the question whether there is a relation between the algebraic degree of a graph and its structural properties. This generalizes the yet open question ``Which graphs have integral spectra?'' stated by Harary and Schwenk in 1974.
We provide an overview of graph products since they are useful to study graph spectra and, in particular, to construct families of integral graphs. Moreover, we present a relation between the diameter, the maximum vertex degree and the algebraic degree of a graph, and construct a potential family of graphs of maximum algebraic degree.
Furthermore, we determine precisely the algebraic degree of circulant graphs and find new criteria for isospectrality of circulant graphs. Moreover, we solve the inverse Galois problem for circulant graphs showing that every finite abelian extension of the rationals is the splitting field of some circulant graph. Those results generalize a theorem of So who characterized all integral circulant graphs. For our proofs we exploit the theory of Schur rings which was already used in order to solve the isomorphism problem for circulant graphs.
Besides that, we study spectra of zero-divisor graphs over finite commutative rings.
Given a ring \(R\), the zero-divisor graph over \(R\) is defined as the graph with vertex set being the set of non-zero zero-divisors of \(R\) where two vertices \(x,y\) are adjacent if and only if \(xy=0\). We investigate relations between the eigenvalues of a zero-divisor graph, its structural properties and the algebraic properties of the respective ring.

Many modern statistically efficient methods come with tremendous computational challenges, often leading to large-scale optimisation problems. In this work, we examine such computational issues for recently developed estimation methods in nonparametric regression with a specific view on image denoising. We consider in particular certain variational multiscale estimators which are statistically optimal in minimax sense, yet computationally intensive. Such an estimator is computed as the minimiser of a smoothness functional (e.g., TV norm) over the class of all estimators such that none of its coefficients with respect to a given multiscale dictionary is statistically significant. The so obtained multiscale Nemirowski-Dantzig estimator (MIND) can incorporate any convex smoothness functional and combine it with a proper dictionary including wavelets, curvelets and shearlets. The computation of MIND in general requires to solve a high-dimensional constrained convex optimisation problem with a specific structure of the constraints induced by the statistical multiscale testing criterion. To solve this explicitly, we discuss three different algorithmic approaches: the Chambolle-Pock, ADMM and semismooth Newton algorithms. Algorithmic details and an explicit implementation is presented and the solutions are then compared numerically in a simulation study and on various test images. We thereby recommend the Chambolle-Pock algorithm in most cases for its fast convergence. We stress that our analysis can also be transferred to signal recovery and other denoising problems to recover more general objects whenever it is possible to borrow statistical strength from data patches of similar object structure.

Fluids in Gravitational Fields – Well-Balanced Modifications for Astrophysical Finite-Volume Codes
(2021)

Stellar structure can -- in good approximation -- be described as a hydrostatic state, which which arises due to a balance between gravitational force and pressure gradient. Hydrostatic states are static solutions of the full compressible Euler system with gravitational source term, which can be used to model the stellar interior. In order to carry out simulations of dynamical processes occurring in stars, it is vital for the numerical method to accurately maintain the hydrostatic state over a long time period. In this thesis we present different methods to modify astrophysical finite volume codes in order to make them \emph{well-balanced}, preventing them from introducing significant discretization errors close to hydrostatic states. Our well-balanced modifications are constructed so that they can meet the requirements for methods applied in the astrophysical context: They can well-balance arbitrary hydrostatic states with any equation of state that is applied to model thermodynamical relations and they are simple to implement in existing astrophysical finite volume codes. One of our well-balanced modifications follows given solutions exactly and can be applied on any grid geometry. The other methods we introduce, which do no require any a priori knowledge, balance local high order approximations of arbitrary hydrostatic states on a Cartesian grid. All of our modifications allow for high order accuracy of the method. The improved accuracy close to hydrostatic states is verified in various numerical experiments.

This paper concerns the an intelligent mobile application for spatial design support and security domain. Mobility has two aspects in our research: The first one is the usage of mobile robots for 3D mapping of urban areas and for performing some specific tasks. The second mobility aspect is related with a novel Software as a Service system that allows access to robotic functionalities and data over the Ethernet, thus we demonstrate the use of the novel NVIDIA GRID technology allowing to virtualize the graphic processing unit. We introduce Complex Shape Histogram, a core component of our artificial intelligence engine, used for classifying 3D point clouds with a Support Vector Machine. We use Complex Shape Histograms also for loop closing detection in the simultaneous localization and mapping algorithm. Our intelligent mobile system is built on top of the Qualitative Spatio-Temporal Representation and Reasoning framework. This framework defines an ontology and a semantic model, which are used for building the intelligent mobile user interfaces. We show experiments demonstrating advantages of our approach. In addition, we test our prototypes in the field after the end-user case studies demonstrating a relevant contribution for future intelligent mobile systems that merge mobile robots with novel data centers.