510 Mathematik
Refine
Has Fulltext
- yes (162)
Is part of the Bibliography
- yes (162)
Year of publication
Document Type
- Doctoral Thesis (105)
- Journal article (39)
- Book (6)
- Other (3)
- Report (3)
- Conference Proceeding (2)
- Preprint (2)
- Book article / Book chapter (1)
- Master Thesis (1)
Keywords
- Nash-Gleichgewicht (7)
- Optimale Kontrolle (7)
- Extremwertstatistik (6)
- Newton-Verfahren (6)
- Nichtlineare Optimierung (6)
- Optimierung (6)
- Mathematik (5)
- optimal control (5)
- Differentialgleichung (4)
- MPEC (4)
Institute
Sonstige beteiligte Institutionen
ResearcherID
- B-4606-2017 (1)
We construct a foliation of an asymptotically flat end of a Riemannian manifold by hypersurfaces which are critical points of a natural functional arising in potential theory. These hypersurfaces are perturbations of large coordinate spheres, and they admit solutions of a certain over-determined boundary value problem involving the Laplace–Beltrami operator. In a key step we must invert the Dirichlet-to-Neumann operator, highlighting the nonlocal nature of our problem.
A reformulation of cardinality-constrained optimization problems into continuous nonlinear optimization problems with an orthogonality-type constraint has gained some popularity during the last few years. Due to the special structure of the constraints, the reformulation violates many standard assumptions and therefore is often solved using specialized algorithms. In contrast to this, we investigate the viability of using a standard safeguarded multiplier penalty method without any problem-tailored modifications to solve the reformulated problem. We prove global convergence towards an (essentially strongly) stationary point under a suitable problem-tailored quasinormality constraint qualification. Numerical experiments illustrating the performance of the method in comparison to regularization-based approaches are provided.
In this paper we derive new results on multivariate extremes and D-norms. In particular we establish new characterizations of the multivariate max-domain of attraction property. The limit distribution of certain multivariate exceedances above high thresholds is derived, and the distribution of that generator of a D-norm on R\(^{d}\), whose components sum up to d, is obtained. Finally we introduce exchangeable D-norms and show that the set of exchangeable D-norms is a simplex.
We investigate the convergence of the proximal gradient method applied to control problems with non-smooth and non-convex control cost. Here, we focus on control cost functionals that promote sparsity, which includes functionals of L\(^{p}\)-type for p\in [0,1). We prove stationarity properties of weak limit points of the method. These properties are weaker than those provided by Pontryagin’s maximum principle and weaker than L-stationarity.
Sequential optimality conditions for cardinality-constrained optimization problems with applications
(2021)
Recently, a new approach to tackle cardinality-constrained optimization problems based on a continuous reformulation of the problem was proposed. Following this approach, we derive a problem-tailored sequential optimality condition, which is satisfied at every local minimizer without requiring any constraint qualification. We relate this condition to an existing M-type stationary concept by introducing a weak sequential constraint qualification based on a cone-continuity property. Finally, we present two algorithmic applications: We improve existing results for a known regularization method by proving that it generates limit points satisfying the aforementioned optimality conditions even if the subproblems are only solved inexactly. And we show that, under a suitable Kurdyka–Łojasiewicz-type assumption, any limit point of a standard (safeguarded) multiplier penalty method applied directly to the reformulated problem also satisfies the optimality condition. These results are stronger than corresponding ones known for the related class of mathematical programs with complementarity constraints.
Die Auseinandersetzung mit Simulations- und Modellierungsaufgaben, die mit digitalen Werkzeugen zu bearbeiten sind, stellt veränderte Anforderungen an Mathematiklehrkräfte in der Unterrichtsplanung und -durchführung. Werden digitale Werkzeuge sinnvoll eingesetzt, so unterstützen sie Simulations- und Modellierungsprozesse und ermöglichen realitätsnähere Sachkontexte im Mathematikunterricht. Für die empirische Untersuchung professioneller Kompetenzen zum Lehren des Simulierens und mathematischen Modellierens mit digitalen Werkzeugen ist es notwendig, Aspekte globaler Lehrkompetenzen von (angehenden) Mathematiklehrkräften bereichsspezifisch auszudeuten.
Daher haben wir ein Testinstrument entwickelt, das die Überzeugungen, die Selbstwirksamkeitserwartungen und das fachdidaktische Wissen zum Lehren des Simulierens und mathematischen Modellierens mit digitalen Werkzeugen erfasst. Ergänzt wird das Testinstrument durch selbstberichtete Vorerfahrungen zum eigenen Gebrauch digitaler Werkzeuge sowie zur Verwendung digitaler Werkzeuge in Unterrichtsplanung und -durchführung.
Das Testinstrument ist geeignet, um mittels Analysen von Veranstaltungsgruppen im Prä-Post-Design den Zuwachs der oben beschriebenen Kompetenz von (angehenden) Mathematiklehrkräften zu messen. Somit können in Zukunft anhand der Ergebnisse die Wirksamkeit von Lehrveranstaltungen, die diese Kompetenz fördern (sollen), untersucht und evaluiert werden.
Der Beitrag gliedert sich in zwei Teile: Zunächst werden in der Testbeschreibung das zugrundeliegende Konstrukt und der Anwendungsbereich des Testinstruments sowie dessen Aufbau und Hinweise zur Durchführung beschrieben. Zudem wird die Testgüte anhand der Pilotierungsergebnisse überprüft. Im zweiten Teil befindet sich das vollständige Testinstrument.
In forecasting count processes, practitioners often ignore the discreteness of counts and compute forecasts based on Gaussian approximations instead. For both central and non-central point forecasts, and for various types of count processes, the performance of such approximate point forecasts is analyzed. The considered data-generating processes include different autoregressive schemes with varying model orders, count models with overdispersion or zero inflation, counts with a bounded range, and counts exhibiting trend or seasonality. We conclude that Gaussian forecast approximations should be avoided.
In this paper we study properties of the Laplace approximation of the posterior distribution arising in nonlinear Bayesian inverse problems. Our work is motivated by Schillings et al. (Numer Math 145:915–971, 2020. https://doi.org/10.1007/s00211-020-01131-1), where it is shown that in such a setting the Laplace approximation error in Hellinger distance converges to zero in the order of the noise level. Here, we prove novel error estimates for a given noise level that also quantify the effect due to the nonlinearity of the forward mapping and the dimension of the problem. In particular, we are interested in settings in which a linear forward mapping is perturbed by a small nonlinear mapping. Our results indicate that in this case, the Laplace approximation error is of the size of the perturbation. The paper provides insight into Bayesian inference in nonlinear inverse problems, where linearization of the forward mapping has suitable approximation properties.
This paper is devoted to the numerical analysis of non-smooth ensemble optimal control problems governed by the Liouville (continuity) equation that have been originally proposed by R.W. Brockett with the purpose of determining an efficient and robust control strategy for dynamical systems. A numerical methodology for solving these problems is presented that is based on a non-smooth Lagrange optimization framework where the optimal controls are characterized as solutions to the related optimality systems. For this purpose, approximation and solution schemes are developed and analysed. Specifically, for the approximation of the Liouville model and its optimization adjoint, a combination of a Kurganov–Tadmor method, a Runge–Kutta scheme, and a Strang splitting method are discussed. The resulting optimality system is solved by a projected semi-smooth Krylov–Newton method. Results of numerical experiments are presented that successfully validate the proposed framework.
In this article we collect some recent results on the global existence of weak solutions for diffuse interface models involving incompressible magnetic fluids. We consider both the cases of matched and unmatched specific densities. For the model involving fluids with identical densities we consider the free energy density to be a double well potential whereas for the unmatched density case it is crucial to work with a singular free energy density.