## 515 Analysis

### Refine

#### Has Fulltext

- yes (8)

#### Is part of the Bibliography

- yes (8)

#### Document Type

- Doctoral Thesis (7)
- Master Thesis (1)

#### Language

- English (8)

#### Keywords

- Optimale Kontrolle (2)
- optimal control (2)
- Acoustic equations (1)
- Burgers-Gleichung (1)
- Dichtefunktionalformalismus (1)
- Entropiebedingung (1)
- Entropielösung (1)
- Entropy admissibility condition (1)
- Epidemiologie (1)
- Euler equations (1)

#### Institute

#### Sonstige beteiligte Institutionen

We analyze the mathematical models of two classes of physical phenomena. The first class of phenomena we consider is the interaction between one or more insulating rigid bodies and an electrically conducting fluid, inside of which the bodies are contained, as well as the electromagnetic fields trespassing both of the materials. We take into account both the cases of incompressible and compressible fluids. In both cases our main result yields the existence of weak solutions to the associated system of partial differential equations, respectively. The proofs of these results are built upon hybrid discrete-continuous approximation schemes: Parts of the systems are discretized with respect to time in order to deal with the solution-dependent test functions in the induction equation. The remaining parts are treated as continuous equations on the small intervals between consecutive discrete time points, allowing us to employ techniques which do not transfer to the discretized setting. Moreover, the solution-dependent test functions in the momentum equation are handled via the use of classical penalization methods.
The second class of phenomena we consider is the evolution of a magnetoelastic material. Here too, our main result proves the existence of weak solutions to the corresponding system of partial differential equations. Its proof is based on De Giorgi's minimizing movements method, in which the system is discretized in time and, at each discrete time point, a minimization problem is solved, the associated Euler-Lagrange equations of which constitute a suitable approximation of the original equation of motion and magnetic force balance. The construction of such a minimization problem is made possible by the realization that, already on the continuous level, both of these equations can be written in terms of the same energy and dissipation potentials. The functional for the discrete minimization problem can then be constructed on the basis of these potentials.

This thesis considers a model of a scalar partial differential equation in the presence of a singular source term, modeling the interaction between an inviscid fluid represented by the Burgers equation and an arbitrary, finite amount of particles moving inside the fluid, each one acting as a point-wise drag force with a particle related friction constant.
\begin{align*}
\partial_t u + \partial_x (u^2/2) &= \sum_{i \in N(t)} \lambda_i \Big(h_i'(t)-u(t,h_i(t)\Big)\delta(x-h_i(t))
\end{align*}
The model was introduced for the case of a single particle by Lagoutière, Seguin and Takahashi, is a first step towards a better understanding of interaction between fluids and solids on the level of partial differential equations and has the unique property of considering entropy admissible solutions and the interaction with shockwaves.
The model is extended to an arbitrary, finite number of particles and interactions like merging, splitting and crossing of particle paths are considered.
The theory of entropy admissibility is revisited for the cases of interfaces and discontinuous flux conservation laws, existing results are summarized and compared, and adapted for regions of particle interactions. To this goal, the theory of germs introduced by Andreianov, Karlsen and Risebro is extended to this case of non-conservative interface coupling.
Exact solutions for the Riemann Problem of particles drifting apart are computed and analysis on the behavior of entropy solutions across the particle related interfaces is used to determine physically relevant and consistent behavior for merging and splitting of particles. Well-posedness of entropy solutions to the Cauchy problem is proven, using an explicit construction method, L-infinity bounds, an approximation of the particle paths and compactness arguments to obtain existence of entropy solutions. Uniqueness is shown in the class of weak entropy solutions using almost classical Kruzkov-type analysis and the notion of L1-dissipative germs.
Necessary fundamentals of hyperbolic conservation laws, including weak solutions, shocks and rarefaction waves and the Rankine-Hugoniot condition are briefly recapitulated.

The present thesis considers the modelling of gas mixtures via a kinetic description. Fundamentals about the Boltzmann equation for gas mixtures and the BGK approximation are presented. Especially, issues in extending these models to gas mixtures are discussed. A non-reactive two component gas mixture is considered. The two species mixture is modelled by a system of kinetic BGK equations featuring two interaction terms to account for momentum and energy transfer between the two species. The model presented here contains several models from physicists and engineers as special cases. Consistency of this model is proven: conservation properties, positivity of all temperatures and the H-theorem. The form in global equilibrium as Maxwell distributions is specified. Moreover, the usual macroscopic conservation laws can be derived.
In the literature, there is another type of BGK model for gas mixtures developed by Andries, Aoki and Perthame, which contains only one interaction term. In this thesis, the advantages of these two types of models are discussed and the usefulness of the model presented here is shown by using this model to determine an unknown function in the energy exchange of the macroscopic equations for gas mixtures described in the literature by Dellacherie. In addition, for each of the two models existence and uniqueness of mild solutions is shown. Moreover, positivity of classical solutions is proven.
Then, the model presented here is applied to three physical applications: a plasma consisting of ions and electrons, a gas mixture which deviates from equilibrium and a gas mixture consisting of polyatomic molecules.
First, the model is extended to a model for charged particles. Then, the equations of magnetohydrodynamics are derived from this model. Next, we want to apply this extended model to a mixture of ions and electrons in a special physical constellation which can be found for example in a Tokamak. The mixture is partly in equilibrium in some regions, in some regions it deviates from equilibrium. The model presented in this thesis is taken for this purpose, since it has the advantage to separate the intra and interspecies interactions. Then, a new model based on a micro-macro decomposition is proposed in order to capture the physical regime of being partly in equilibrium, partly not. Theoretical results are presented, convergence rates to equilibrium in the space-homogeneous case and the Landau damping for mixtures, in order to compare it with numerical results.
Second, the model presented here is applied to a gas mixture which deviates from equilibrium such that it is described by Navier-Stokes equations on the macroscopic level. In this macroscopic description it is expected that four physical coefficients will show up, characterizing the physical behaviour of the gases, namely the diffusion coefficient, the viscosity coefficient, the heat conductivity and the thermal diffusion parameter. A Chapman-Enskog expansion of the model presented here is performed in order to capture three of these four physical coefficients. In addition, several possible extensions to an ellipsoidal statistical model for gas mixtures are proposed in order to capture the fourth coefficient. Three extensions are proposed: An extension which is as simple as possible, an intuitive extension copying the one species case and an extension which takes into account the physical motivation of the physicist Holway who invented the ellipsoidal statistical model for one species. Consistency of the extended models like conservation properties, positivity of all temperatures and the H-theorem are proven. The shape of global Maxwell distributions in equilibrium are specified.
Third, the model presented here is applied to polyatomic molecules. A multi component gas mixture with translational and internal energy degrees of freedom is considered. The two species are allowed to have different degrees of freedom in internal energy and are modelled by a system of kinetic ellipsoidal statistical equations. Consistency of this model is shown: conservation properties, positivity of the temperature, H-theorem and the form of Maxwell distributions in equilibrium. For numerical purposes the Chu reduction is applied to the developed model for polyatomic gases to reduce the complexity of the model and an application for a gas consisting of a mono-atomic and a diatomic gas is given.
Last, the limit from the model presented here to the dissipative Euler equations for gas mixtures is proven.

Finite volume methods for compressible Euler equations suffer from an excessive diffusion in the limit of low Mach numbers. This PhD thesis explores new approaches to overcome this.
The analysis of a simpler set of equations that also possess a low Mach number limit is found to give valuable insights. These equations are the acoustic equations obtained as a linearization of the Euler equations. For both systems the limit is characterized by a divergencefree velocity. This constraint is nontrivial only in multiple spatial dimensions. As the Jacobians of the acoustic system do not commute, acoustics cannot be reduced to some kind of multi-dimensional advection. Therefore first an exact solution in multiple spatial dimensions is obtained. It is shown that the low Mach number limit can be interpreted as a limit of long times.
It is found that the origin of the inability of a scheme to resolve the low Mach number limit is the lack a discrete counterpart to the limit of long times. Numerical schemes whose discrete stationary states discretize all the analytic stationary states of the PDE are called stationarity preserving. It is shown that for the acoustic equations, stationarity preserving schemes are vorticity preserving and are those that are able to resolve the low Mach limit (low Mach compliant). This establishes a new link between these three concepts.
Stationarity preservation is studied in detail for both dimensionally split and multi-dimensional schemes for linear acoustics. In particular it is explained why the same multi-dimensional stencils appear in literature in very different contexts: These stencils are unique discretizations of the divergence that allow for stabilizing stationarity preserving diffusion.
Stationarity preservation can also be generalized to nonlinear systems such as the Euler equations. Several ways how such numerical schemes can be constructed for the Euler equations are presented. In particular a low Mach compliant numerical scheme is derived that uses a novel construction idea. Its diffusion is chosen such that it depends on the velocity divergence rather than just derivatives of the different velocity components. This is demonstrated to overcome the low Mach number problem. The scheme shows satisfactory results in numerical simulations and has been found to be stable under explicit time integration.

In this work, multi-particle quantum optimal control problems are studied in the framework of time-dependent density functional theory (TDDFT).
Quantum control problems are of great importance in both fundamental research and application of atomic and molecular systems. Typical applications are laser induced chemical reactions, nuclear magnetic resonance experiments, and quantum computing.
Theoretically, the problem of how to describe a non-relativistic system of multiple particles is solved by the Schrödinger equation (SE). However, due to the exponential increase in numerical complexity with the number of particles, it is impossible to directly solve the Schrödinger equation for large systems of interest. An efficient and successful approach to overcome this difficulty is the framework of TDDFT and the use of the time-dependent Kohn-Sham (TDKS) equations therein.
This is done by replacing the multi-particle SE with a set of nonlinear single-particle Schrödinger equations that are coupled through an additional potential.
Despite the fact that TDDFT is widely used for physical and quantum chemical calculation and software packages for its use are readily available, its mathematical foundation is still under active development and even fundamental issues remain unproven today.
The main purpose of this thesis is to provide a consistent and rigorous setting for the TDKS equations and of the related optimal control problems.
In the first part of the thesis, the framework of density functional theory (DFT) and TDDFT are introduced. This includes a detailed presentation of the different functional sets forming DFT. Furthermore, the known equivalence of the TDKS system to the original SE problem is further discussed.
To implement the TDDFT framework for multi-particle computations, the TDKS equations provide one of the most successful approaches nowadays. However, only few mathematical results concerning these equations are available and these results do not cover all issues that arise in the formulation of optimal control problems governed by the TDKS model.
It is the purpose of the second part of this thesis to address these issues such as higher regularity of TDKS solutions and the case of weaker requirements on external (control) potentials that are instrumental for the formulation of well-posed TDKS control problems. For this purpose, in this work, existence and uniqueness of TDKS solutions are investigated in the Galerkin framework and using energy estimates for the nonlinear TDKS equations.
In the third part of this thesis, optimal control problems governed by the TDKS model are formulated and investigated. For this purpose, relevant cost functionals that model the purpose of the control are discussed.
Henceforth, TDKS control problems result from the requirement of optimising the given cost functionals subject to the differential constraint given by the TDKS equations. The analysis of these problems is novel and represents one of the main contributions of the present thesis.
In particular, existence of minimizers is proved and their characterization by TDKS optimality systems is discussed in detail.
To this end, Fréchet differentiability of the TDKS model and of the cost functionals is addressed considering \(H^1\) cost of the control.
This part is concluded by deriving the reduced gradient in the \(L^2\) and \(H^1\) inner product.
While the \(L^2\) optimization is widespread in the literature, the choice of the \(H^1\) gradient is motivated in this work by theoretical consideration and by resulting numerical advantages.
The last part of the thesis is devoted to the numerical approximation of the TDKS optimality systems and to their solution by gradient-based optimization techniques.
For the former purpose, Strang time-splitting pseudo-spectral schemes are discussed including a review of some recent theoretical estimates for these schemes and a numerical validation of these estimates.
For the latter purpose, nonlinear (projected) conjugate gradient methods are implemented and are used to validate the theoretical analysis of this thesis with results of numerical experiments with different cost functional settings.

This thesis deals with value sets, i.e. the question of what the set of values that a set of functions can take in a prescribed point looks like.
Interest in such problems has been around for a long time; a first answer was given by the Schwarz lemma in the 19th century, and soon various refinements were proven.
Since the 1930s, a powerful method for solving such problems has been developed, namely Loewner theory. We make extensive use of this tool, as well as variation methods which go back to Schiffer to examine the following questions:
We describe the set of values a schlicht normalised function on the unit disc with prescribed derivative at the origin can take by applying Pontryagin's maximum principle to the radial Loewner equation.
We then determine the value ranges for the set of holomorphic, normalised, and bounded functions that have only real coefficients in their power series expansion around 0, and for the smaller set of functions which are additionally typically real.
Furthermore, we describe the values a univalent self-mapping of the upper half-plane with hydrodynamical normalization which is symmetric with respect to the imaginary axis can take.
Lastly, we give a necessary condition for a schlicht bounded function f on the unit disc to have extremal derivative in a point z where its value f(z) is fixed by using variation methods.

Mathematical modelling, simulation, and optimisation are core methodologies for future
developments in engineering, natural, and life sciences. This work aims at applying these
mathematical techniques in the field of biological processes with a focus on the wine
fermentation process that is chosen as a representative model.
In the literature, basic models for the wine fermentation process consist of a system of
ordinary differential equations. They model the evolution of the yeast population number
as well as the concentrations of assimilable nitrogen, sugar, and ethanol. In this thesis,
the concentration of molecular oxygen is also included in order to model the change of
the metabolism of the yeast from an aerobic to an anaerobic one. Further, a more sophisticated
toxicity function is used. It provides simulation results that match experimental
measurements better than a linear toxicity model. Moreover, a further equation for the
temperature plays a crucial role in this work as it opens a way to influence the fermentation
process in a desired way by changing the temperature of the system via a cooling
mechanism. From the view of the wine industry, it is necessary to cope with large scale
fermentation vessels, where spatial inhomogeneities of concentrations and temperature
are likely to arise. Therefore, a system of reaction-diffusion equations is formulated in
this work, which acts as an approximation for a model including computationally very
expensive fluid dynamics.
In addition to the modelling issues, an optimal control problem for the proposed
reaction-diffusion fermentation model with temperature boundary control is presented
and analysed. Variational methods are used to prove the existence of unique weak solutions
to this non-linear problem. In this framework, it is possible to exploit the Hilbert
space structure of state and control spaces to prove the existence of optimal controls.
Additionally, first-order necessary optimality conditions are presented. They characterise
controls that minimise an objective functional with the purpose to minimise the final
sugar concentration. A numerical experiment shows that the final concentration of sugar
can be reduced by a suitably chosen temperature control.
The second part of this thesis deals with the identification of an unknown function
that participates in a dynamical model. For models with ordinary differential equations,
where parts of the dynamic cannot be deduced due to the complexity of the underlying
phenomena, a minimisation problem is formulated. By minimising the deviations of simulation
results and measurements the best possible function from a trial function space
is found. The analysis of this function identification problem covers the proof of the
differentiability of the function–to–state operator, the existence of minimisers, and the
sensitivity analysis by means of the data–to–function mapping. Moreover, the presented
function identification method is extended to stochastic differential equations. Here, the
objective functional consists of the difference of measured values and the statistical expected
value of the stochastic process solving the stochastic differential equation. Using a
Fokker-Planck equation that governs the probability density function of the process, the
probabilistic problem of simulating a stochastic process is cast to a deterministic partial
differential equation. Proofs of unique solvability of the forward equation, the existence of
minimisers, and first-order necessary optimality conditions are presented. The application
of the function identification framework to the wine fermentation model aims at finding
the shape of the toxicity function and is carried out for the deterministic as well as the
stochastic case.

In this thesis it is shown how the spread of infectious diseases can be described via mathematical models that show the dynamic behavior of epidemics. Ordinary differential equations are used for the modeling process. SIR and SIRS models are distinguished, depending on whether a disease confers immunity to individuals after recovery or not. There are characteristic parameters for each disease like the infection rate or the recovery rate. These parameters indicate how aggressive a disease acts and how long it takes for an individual to recover, respectively. In general the parameters are time-varying and depend on population groups. For this reason, models with multiple subgroups are introduced, and switched systems are used to carry out time-variant parameters.
When investigating such models, the so called disease-free equilibrium is of interest, where no infectives appear within the population. The question is whether there are conditions, under which this equilibrium is stable. Necessary mathematical tools for the stability analysis are presented. The theory of ordinary differential equations, including Lyapunov stability theory, is fundamental. Moreover, convex and nonsmooth analysis, positive systems and differential inclusions are introduced. With these tools, sufficient conditions are given for the disease-free equilibrium of SIS, SIR and SIRS systems to be asymptotically stable.