## 519 Wahrscheinlichkeiten, angewandte Mathematik

### Refine

#### Document Type

- Journal article (6)
- Doctoral Thesis (5)

#### Keywords

- A-priori-Wissen (2)
- Audit sampling (2)
- Konfidenzintervall (2)
- consistent partial least squares (2)
- ARFIMA-Modell (1)
- ARFIMA-Modelle (1)
- ARMA-Modell (1)
- Anpassungstest (1)
- Binomialverteilung (1)
- Confidence intervals (1)

#### Institute

A mathematical optimal-control tumor therapy framework consisting of radio- and anti-angiogenesis control strategies that are included in a tumor growth model is investigated. The governing system, resulting from the combination of two well established models, represents the differential constraint of a non-smooth optimal control problem that aims at reducing the volume of the tumor while keeping the radio- and anti-angiogenesis chemical dosage to a minimum. Existence of optimal solutions is proved and necessary conditions are formulated in terms of the Pontryagin maximum principle. Based on this principle, a so-called sequential quadratic Hamiltonian (SQH) method is discussed and benchmarked with an “interior point optimizer―a mathematical programming language” (IPOPT-AMPL) algorithm. Results of numerical experiments are presented that successfully validate the SQH solution scheme. Further, it is shown how to choose the optimisation weights in order to obtain treatment functions that successfully reduce the tumor volume to zero.

Statistical Procedures for modelling a random phenomenon heavily depend on the choice of a certain family of probability distributions. Frequently, this choice is governed by a good mathematical feasibility, but disregards that some distribution properties may contradict reality. At most, the choosen distribution may be considered as an approximation. The present thesis starts with a construction of distributions, which uses solely available information and yields distributions having greatest uncertainty in the sense of the maximum entropy principle. One of such distributions is the monotonic distribution, which is solely determined by its support and the mean. Although classical frequentist statistics provides estimation procedures which may incorporate prior information, such procedures are rarely considered. A general frequentist scheme for the construction of shortest confidence intervals for distribution parameters under prior information is presented. In particular, the scheme is used for establishing confidence intervals for the mean of the monotonic distribution and compared to classical procedures. Additionally, an approximative procedure for the upper bound of the support of the monotonic distribution is proposed. A core purpose of auditing sampling is the determination of confidence intervals for the mean of zero-inflated populations. The monotonic distribution is used for modelling such a population and is utilised for the procedure of a confidence interval under prior information for the mean. The results are compared to two-sided intervals of Stringer-type.

An efficient multigrid finite-differences scheme for solving elliptic Fredholm partial integro-differential equations (PIDE) is discussed. This scheme combines a second-order accurate finite difference discretization of the PIDE problem with a multigrid scheme that includes a fast multilevel integration of the Fredholm operator allowing the fast solution of the PIDE problem. Theoretical estimates of second-order accuracy and results of local Fourier analysis of convergence of the proposed multigrid scheme are presented. Results of numerical experiments validate these estimates and demonstrate optimal computational complexity of the proposed framework.

A framework for the optimal sparse-control of the probability density function of a jump-diffusion process is presented. This framework is based on the partial integro-differential Fokker-Planck (FP) equation that governs the time evolution of the probability density function of this process. In the stochastic process and, correspondingly, in the FP model the control function enters as a time-dependent coefficient. The objectives of the control are to minimize a discrete-in-time, resp. continuous-in-time, tracking functionals and its L2- and L1-costs, where the latter is considered to promote control sparsity. An efficient proximal scheme for solving these optimal control problems is considered. Results of numerical experiments are presented to validate the theoretical results and the computational effectiveness of the proposed control framework.

Structural equation modeling using partial least squares (PLS-SEM) has become a main-stream modeling approach in various disciplines. Nevertheless, prior literature still lacks a practical guidance on how to properly test for differences between parameter estimates. Whereas existing techniques such as parametric and non-parametric approaches in PLS multi-group analysis solely allow to assess differences between parameters that are estimated for different subpopulations, the study at hand introduces a technique that allows to also assess whether two parameter estimates that are derived from the same sample are statistically different. To illustrate this advancement to PLS-SEM, we particularly refer to a reduced version of the well-established technology acceptance model.

This article introduces a new consistent variance-based estimator called ordinal consistent partial least squares (OrdPLSc). OrdPLSc completes the family of variance-based estimators consisting of PLS, PLSc, and OrdPLS and permits to estimate structural equation models of composites and common factors if some or all indicators are measured on an ordinal categorical scale. A Monte Carlo simulation (N =500) with different population models shows that OrdPLSc provides almost unbiased estimates. If all constructs are modeled as common factors, OrdPLSc yields estimates close to those of its covariance-based counterpart, WLSMV, but is less efficient. If some constructs are modeled as composites, OrdPLSc is virtually without competition.

Extreme value theory aims at modeling extreme but rare events from a probabilistic point of view. It is well-known that so-called generalized Pareto distributions, which are briefly reviewed in Chapter 1, are the only reasonable probability distributions suited for modeling observations above a high threshold, such as waves exceeding the height of a certain dike, earthquakes having at least a certain intensity, and, after applying a simple transformation, share prices falling below some low threshold. However, there are cases for which a generalized Pareto model might fail. Therefore, Chapter 2 derives certain neighborhoods of a generalized Pareto distribution and provides several statistical tests for these neighborhoods, where the cases of observing finite dimensional data and of observing continuous functions on [0,1] are considered. By using a notation based on so-called D-norms it is shown that these tests consistently link both frameworks, the finite dimensional and the functional one. Since the derivation of the asymptotic distributions of the test statistics requires certain technical restrictions, Chapter 3 analyzes these assumptions in more detail. It provides in particular some examples of distributions that satisfy the null hypothesis and of those that do not. Since continuous copula processes are crucial tools for the functional versions of the proposed tests, it is also discussed whether those copula processes actually exist for a given set of data. Moreover, some practical advice is given how to choose the free parameters incorporated in the test statistics. Finally, a simulation study in Chapter 4 compares the in total three different test statistics with another test found in the literature that has a similar null hypothesis. This thesis ends with a short summary of the results and an outlook to further open questions.

Measurements of the centrality and rapidity dependence of inclusive jet production in \(\sqrt{^SNN}\)=5.02 TeV proton–lead (p+Pb) collisions and the jet cross-section in \(\sqrt{s}\)=2.76 TeV proton–proton collisions are presented. These quantities are measured in datasets corresponding to an integrated luminosity of 27.8 nb\(^{−1}\) and 4.0 pb\(^{−1}\), respectively, recorded with the ATLAS detector at the Large Hadron Collider in 2013. The p+Pb collision centrality was characterised using the total transverse energy measured in the pseudorapidity interval −4.9<η<−3.2 in the direction of the lead beam. Results are presented for the double-differential per-collision yields as a function of jet rapidity and transverse momentum (\(p_T\)) for minimum-bias and centrality-selected p+Pb collisions, and are compared to the jet rate from the geometric expectation. The total jet yield in minimum-bias events is slightly enhanced above the expectation in a \(p_T\)-dependent manner but is consistent with the expectation within uncertainties. The ratios of jet spectra from different centrality selections show a strong modification of jet production at all \(p_T\) at forward rapidities and for large \(p_T\) at mid-rapidity, which manifests as a suppression of the jet yield in central events and an enhancement in peripheral events. These effects imply that the factorisation between hard and soft processes is violated at an unexpected level in proton–nucleus collisions. Furthermore, the modifications at forward rapidities are found to be a function of the total jet energy only, implying that the violations may have a simple dependence on the hard parton–parton kinematics.

Based on the work of Eisenberg and Noe [2001], Suzuki [2002], Elsinger [2009] and Fischer [2014], we consider a generalization of Merton's asset valuation approach where n firms are linked by cross-ownership of equities and liabilities. Each firm is assumed to have a single outstanding liability, whereas its assets consist of one system-exogenous asset, as well as system-endogenous assets comprising some fraction of other firms' equity and liability, respectively. Following Fischer [2014], one can obtain no-arbitrage prices of equity and the recovery claims of liabilities as solutions of a fixed point problem, and hence obtain no-arbitrage prices of the `firm value' of each firm, which is the value of the firm's liability plus the firm's equity.
In a first step, we consider the two-firm case where explicit formulae for the no-arbitrage prices of the firm values are available (cf. Suzuki [2002]). Since firm values are derivatives of exogenous asset values, the distribution of firm values at maturity can be determined from the distribution of exogenous asset values. The Merton model and most of its known extensions do not account for the cross-ownership structure of the assets owned by the firm. Therefore the assumption of lognormally distributed exogenous assets leads to lognormally distributed firm values in such models, as the values of the liability and the equity add up to the exogenous asset's value (which has lognormal distribution by assumption). Our work therefore starts from lognormally distributed exogenous assets and reveals how cross-ownership, when correctly accounted for in the valuation process, affects the distribution of the firm value, which is not lognormal anymore. In a simulation study we examine the impact of several parameters (amount of cross-ownership of debt and equity, ratio of liabilities to expected exogenous assets value) on the differences between the distribution of firm values obtained from our model and correspondingly matched lognormal distributions. It becomes clear that the assumption of lognormally distributed firm values may lead to both over- and underestimation of the “true" firm values (within the cross-ownership model) and consequently of bankruptcy risk, too.
In a second step, the bankruptcy risk of one firm within the system is analyzed in more detail in a further simulation study, revealing that the correct incorporation of cross-ownership in the valuation procedure is the more important, the tighter the cross-ownership structure between the two firms. Furthermore, depending on the considered type of cross-ownership (debt or equity), the assumption of lognormally distributed firm values is likely to result in an over- resp. underestimation of the actual probability of default. In a similar vein, we consider the Value-at-Risk (VaR) of a firm in the system, which we calculate as the negative α-quantile of the firm value at maturity minus the firm's risk neutral price in t=0, i.e. we consider the (1-α)100%-VaR of the change in firm value. If we let the cross-ownership fractions (i.e. the fraction that one firm holds of another firm's debt or equity) converge to 1 (which is the supremum of the possible values that cross-ownership fractions can take), we can prove that in a system of two firms, the lognormal model will over- resp. underestimate both univariate and bivariate probabilities of default under cross-ownership of debt only resp. cross-ownership of equity only. Furthermore, we provide a formula that allows us to check for an arbitrary scenario of cross-ownership and any non-negative distribution of exogenous assets whether the approximating lognormal model will over- or underestimate the related probability of default of a firm. In particular, any given non-negative distribution of exogenous asset values (non-degenerate in a certain sense) can be transformed into a new, “extreme" distribution of exogenous assets yielding such a low or high actual probability of default that the approximating lognormal model will over- and underestimate this risk, respectively.
After this analysis of the univariate distribution of firm values under cross-ownership in a system of two firms with bivariately lognormally distributed exogenous asset values, we consider the copula of these firm values as a distribution-free measure of the dependency between these firm values. Without cross-ownership, this copula would be the Gaussian copula. Under cross-ownership, we especially consider the behaviour of the copula of firm values in the lower left and upper right corner of the unit square, and depending on the type of cross-ownership and the considered corner, we either obtain error bounds as to how good the copula of firm values under cross-ownership can be approximated with the Gaussian copula, or we see that the copula of firm values can be written as the copula of two linear combinations of exogenous asset values (note that these linear combinations are not lognormally distributed). These insights serve as a basis for our analysis of the tail dependence coefficient of firm values under cross-ownership. Under cross-ownership of debt only, firm values remain upper tail independent, whereas they become perfectly lower tail dependent if the correlation between exogenous asset values exceeds a certain positive threshold, which does not depend on the exact level of cross-ownership. Under cross-ownership of equity only, the situation is reverse in that firm values always remain lower tail independent, but upper tail independence is preserved if and only if the right tail behaviour of both firms’ values is determined by the right tail behaviour of the firms’ own exogenous asset value instead of the respective other firm’s exogenous asset value.
Next, we return to systems of n≥2 firms and analyze sensitivities of no-arbitrage prices of equity and the recovery claims of liabilities with respect to the model parameters. In the literature, such sensitivities are provided with respect to exogenous asset values by Gouriéroux et al. [2012], and we extend the existing results by considering how these no-arbitrage prices depend on the cross-ownership fractions and the level of liabilities. For the former, we can show that all prices are non-decreasing in any cross-ownership fraction in the model, and by use of a version of the Implicit Function Theorem we can also determine exact derivatives. For the latter, we show that the recovery value of debt and the equity value of a firm are non-decreasing and non-increasing in the firm's nominal level of liabilities, respectively, but the firm value is in general not monotone in the firm's level of liabilities. Furthermore, no-arbitrage prices of equity and the recovery claims of liabilities of a firm are in general non-monotone in the nominal level of liabilities of other firms in the system. If we confine ourselves to one type of cross-ownership (i.e. debt or equity), we can derive more precise relationships. All the results can be transferred to risk-neutral prices before maturity.
Finally, following Gouriéroux et al. [2012] and as a kind of extension to the above sensitivity results, we consider how immediate changes in exogenous asset values of one or more firms at maturity affect the financial health of a system of n initially solvent firms. We start with some theoretical considerations on what we call the contagion effect, namely the change in the endogenous asset value of a firm caused by shocks on the exogenous assets of firms within the system. For the two-firm case, an explicit formula is available, making clear that in general (and in particular under cross-ownership of equity only), the effect of contagion can be positive as well as negative, i.e. it can both, mitigate and exacerbate the change in the exogenous asset value of a firm. On the other hand, we cannot generally say that a tighter cross-ownership structure leads to bigger absolute contagion effects. Under cross-ownership of debt only, firms cannot profit from positive shocks beyond the direct effect on exogenous assets, as the contagion effect is always non-positive. Next, we are concerned with spillover effects of negative shocks on a subset of firms to other firms in the system (experiencing non-negative shocks themselves), driving them into default due to large losses in their endogenous asset values. Extending the results of Glasserman and Young [2015], we provide a necessary condition for the shock to cause such an event. This also yields an upper bound for the probability of such an event. We further investigate how the stability of a system of firms exposed to multiple shocks depends on the model parameters in a simulation study. In doing so, we consider three network types (incomplete, core-periphery and ring network) with simultaneous shocks on some of the firms and wiping out a certain percentage of their exogenous assets. Then we analyze for all three types of cross-ownership (debt only, equity only, both debt and equity) how the shock intensity, the shock size, and network parameters as the number of links in the network and the proportion of a firm's debt or equity held within the system of firms influences several output parameters, comprising the total number of defaults and the relative loss in the sum of firm values, among others. Comparing our results to the studies of Nier et al. [2007], Gai and Kapadia [2010] and Elliott et al. [2014], we can only partly confirm their results with respect to the number of defaults. We conclude our work with a theoretical comparison of the complete network (where each firm holds a part of any other firm) and the ring network with respect to the number of defaults caused by a shock on a single firm, as it is done by Allen and Gale [2000]. In line with the literature, we find that under cross-ownership of debt only, complete networks are “robust yet fragile" [Gai and Kapadia, 2010] in that moderate shocks can be completely withstood or drive the firm directly hit by the shock in default, but as soon as the shock exceeds a certain size, all firms are simultaneously in default. In contrast to that, firms default one by one in the ring network, with the first “contagious default" (i.e. a default of a firm not directly hit by the shock) already occurs for smaller shock sizes than under the complete network.

The purpose of confidence and prediction intervals is to provide an interval estimation for an unknown distribution parameter or the future value of a phenomenon. In many applications, prior knowledge about the distribution parameter is available, but rarely made use of, unless in a Bayesian framework. This thesis provides exact frequentist confidence intervals of minimal volume exploiting prior information. The scheme is applied to distribution parameters of the binomial and the Poisson distribution. The Bayesian approach to obtain intervals on a distribution parameter in form of credibility intervals is considered, with particular emphasis on the binomial distribution. An application of interval estimation is found in auditing, where two-sided intervals of Stringer type are meant to contain the mean of a zero-inflated population. In the context of time series analysis, covariates are supposed to improve the prediction of future values. Exponential smoothing with covariates as an extension of the popular forecasting method exponential smoothing is considered in this thesis. A double-seasonality version of it is applied to forecast hourly electricity load under the use of meteorological covariates. Different kinds of prediction intervals for exponential smoothing with covariates are formulated.