530 Physik
Refine
Is part of the Bibliography
- yes (885)
Year of publication
Document Type
- Doctoral Thesis (481)
- Journal article (386)
- Conference Proceeding (4)
- Preprint (4)
- Master Thesis (3)
- Review (3)
- Other (2)
- Habilitation (1)
- Report (1)
Keywords
- Topologischer Isolator (33)
- Molekularstrahlepitaxie (30)
- Parton Distributions (28)
- Quantenpunkt (27)
- Hadron-Hadron scattering (experiments) (24)
- Kernspintomografie (22)
- Organischer Halbleiter (21)
- Halbleiter (20)
- LHC (20)
- physics (20)
Institute
- Physikalisches Institut (642)
- Institut für Theoretische Physik und Astrophysik (209)
- Fakultät für Physik und Astronomie (20)
- Institut für Physikalische und Theoretische Chemie (14)
- Graduate School of Science and Technology (11)
- Graduate School of Life Sciences (5)
- Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik) (5)
- Medizinische Klinik und Poliklinik I (5)
- Theodor-Boveri-Institut für Biowissenschaften (5)
- Institut für diagnostische und interventionelle Neuroradiologie (ehem. Abteilung für Neuroradiologie) (4)
Sonstige beteiligte Institutionen
- Wilhelm-Conrad-Röntgen-Forschungszentrum für komplexe Materialsysteme (5)
- Universitätsklinikum Würzburg (3)
- Würzburg-Dresden Cluster of Excellence ct.qmat (2)
- ATLAS Collaboration (1)
- Bavarian Center for Applied Energy Research (ZAE Bayern), 97074 Würzburg, Germany (1)
- Bayerisches Zentrum für Angewandte Energieforschung e.V. (1)
- CERN (1)
- CERN (Geneva, Switzerland) (1)
- Center for Nanosystems Chemistry (CNC), Universität Würzburg (1)
- Department of Cellular Therapies, University of Navarra, Pamplona, Spain (1)
ResearcherID
- D-1250-2010 (1)
Diese Dissertation führt einen umfassend modular aufgebauten digitalen Zwilling der Positronen-Annihilation-Lebensdauerspektroskopie (PALS) ein, der das Ziel verfolgt, ein tiefergehendes Verständnis der Messmethode zu ermöglichen und aufzuzeigen, wie die Konfiguration des experimentellen Setups sowie die Eigenschaften der verwendeten radioaktiven Positronenquelle zu Verzerrungen im Lebensdauerspektrum führen können. Aufgrund der mathematischen Komplexität realer Lebensdauerspektren, die eine Zerlegung in ihre Komponenten erschwert, und der Herausforderung, die Instrumentauflösungsfunktion / engl.: Instrument Response Function (IRF) genau zu bestimmen, bietet der digitale Zwilling eine innovative Lösung, um jegliche Fragen zur Hardware der PALS mittels einer realitätsgetreuen digitalen Nachbildung des gewünschten Setups zu beantworten.
Der entwickelte digitale Zwilling setzt sich aus drei Kernmodulen zusammen, die schrittweise tiefergehende Einblicke in das simulierte Setup und schließlich in das resultierende Lebensdauerspektrum bieten. Im ersten Modul wird die Open-Source-Softwareplattform Geant4 genutzt, um die physische Welt in eine digitale Umgebung zu überführen. Hierbei steht die Modellierung von Teilcheninteraktionen mit Materie im Fokus, die durch die flexible Architektur von Geant4 ermöglicht wird. In diesem Kontext wurde eine spezifische Simulation implementiert, die eine differenzierte Betrachtung der Gamma-Quanten-Energien erlaubt und somit ein präziseres Verständnis der PALS-Methodik ermöglicht.
Im zweiten Modul erfolgt die Kopplung der aus Geant4 gewonnenen Daten-Streams mit dem DLTPulseGenerator über eine speziell entwickelte Schnittstelle. Diese Schnittstelle bietet neben der sequenziellen Verarbeitung der Daten-Streams die Einbindung physikalischer Prozesse wie der Positronen-Lebensdauer, sowie die Quellstärke des als Positronenstrahler verwendeten radioaktiven Isotops und der zeitlichen Unschärfe des Photo-Multipliers / engl.: Photo-Multiplier-Tube (PMT), wodurch eine umfassende Untersuchung verschiedener Effekte mit einem einzigen Datensatz möglich wird. Dies führt zu einer hohen Vergleichbarkeit der Ergebnisse. Darüber hinaus ermöglicht die Schnittstelle eine detaillierte Klassifizierung möglicher Ereignisse innerhalb der PALS-Methode, was es ermöglicht, quantitative Effekte spezifischer Ereignisse zu untersuchen. Dabei gibt die Schnittstelle sowohl wichtige Informationen aus der Geant4-Simulation als auch Informationen aus ihren eigenen Funktionen an den DLTPulseGenerator weiter, welcher digitalisierte PMT Output-Pulse je nach gewählter Konfiguration des gewählten Digitizers erzeugt.
Das dritte Modul nutzt die DDRS4PALS Software zur Analyse des aus dem zweiten Modul stammenden Daten-Streams, um Informationen über das Lebensdauerspektrum zu extrahieren. Hierbei wird erstmals die Validierung physikalischer Filter am Gesamtspektrum und seiner Anteile gewährt, da durch die Klassifizierung im zweiten Modul des digitalen Zwillings ermöglicht wird, lediglich die unerwünschten Anteile im Lebensdauerspektrum zu betrachten und somit die tatsächliche Wirkung der physikalischen Filter auf diese zu untersuchen.
Der modular und flexibel gestaltete digitale Zwilling der PALS ermöglicht eine einfache Anpassung an veränderte experimentelle Setups und kann auch für ähnliche Messmethoden (z.B. Fluoreszenz-Lebensdauer-Spektroskopie) adaptiert werden. Dadurch markiert der digitale Zwilling einen signifikanten Fortschritt in Richtung einer digitalen Ära der Forschung und trägt zu einem verbesserten Verständnis der Messmethode sowie zu effizienteren und kostengünstigeren Optimierungsprozessen bei.
A search for a narrow scalar resonance decaying into an opposite-sign muon pair produced in events with and without b-tagged jets is presented in this paper. The search uses 36.1 fb(-1) of =13 TeV proton-proton collision data recorded by the ATLAS experiment at the LHC. No significant excess of events above the expected Standard Model background is observed in the investigated mass range of 0.2 to 1.0 TeV. The observed upper limits at 95% confidence level on the cross section times branching ratio for b-quark associated production and gluon-gluon fusion are between 1.9 and 41 fb and 1.6 and 44 fb respectively, which is consistent with expectations.
Constraints on selected mediator-based dark matter models and a scalar dark energy model using up to 37 fb(-1) = 13 TeV pp collision data collected by the ATLAS detector at the LHC during 2015-2016 are summarised in this paper. The results of experimental searches in a variety of final states are interpreted in terms of a set of spin-1 and spin-0 single-mediator dark matter simplified models and a second set of models involving an extended Higgs sector plus an additional vector or pseudo-scalar mediator. The searches considered in this paper constrain spin-1 leptophobic and leptophilic mediators, spin-0 colour-neutral and colour-charged mediators and vector or pseudo-scalar mediators embedded in extended Higgs sector models. In this case, also = 8 TeV pp collision data are used for the interpretation of the results. The results are also interpreted for the first time in terms of light scalar particles that could contribute to the accelerating expansion of the universe (dark energy).
We develop a new heat kernel method that is suited for a systematic study of the renormalization group flow in Hořava gravity (and in Lifshitz field theories in general). This method maintains covariance at all stages of the calculation, which is achieved by introducing a generalized Fourier transform covariant with respect to the nonrelativistic background spacetime. As a first test, we apply this method to compute the anisotropic Weyl anomaly for a (2 + 1)-dimensional scalar field theory around a z = 2 Lifshitz point and corroborate the previously found result. We then proceed to general scalar operators and evaluate their one-loop effective action. The covariant heat kernel method that we develop also directly applies to operators with spin structures in arbitrary dimensions.
Cross-sections of associated production of a Higgs boson decaying into bottomquark pairs and an electroweak gauge boson, W or Z, decaying into leptons are measured as a function of the gauge boson transverse momentum. The measurements are performed in kinematic fiducial volumes defined in the simplified template cross-section' framework. The results are obtained using 79.8 fb(-1) of proton-proton collisions recorded by the ATLAS detector at the Large Hadron Collider at a centre-of-mass energy of 13 TeV. All measurements are found to be in agreement with the Standard Model predictions, and limits are set on the parameters of an effective Lagrangian sensitive to modifications of the Higgs boson couplings to the electroweak gauge bosons.
A search is performed for localised excesses in dijet mass distributions of low-dijet-mass events produced in association with a high transverse energy photon. The search uses up to 79.8 fb(-1) of LHC proton-proton collisions collected by the ATLAS experiment at a centre-of-mass energy of 13 TeV during 2015-2017. Two variants are presented: one which makes no jet flavour requirements and one which requires both jets to be tagged as b-jets. The observed mass distributions are consistent with multi-jet processes in the Standard Model. The data are used to set upper limits on the production cross-section for a benchmark Z' model and, separately, on generic Gaussian-shape contributions to the mass distributions, extending the current ATLAS constraints on dijet resonances to the mass range between 225 and 1100 GeV. (C) 2019 The Author. Published by Elsevier B.V.
This paper presents the combinations of single-top-quark production cross-section measurements by the ATLAS and CMS Collaborations, using data from LHC proton-proton collisions at = 7 and 8 TeV corresponding to integrated luminosities of 1.17 to 5.1 fb(-1) at = 7 TeV and 12.2 to 20.3 fb(-1) at = 8 TeV. These combinations are performed per centre-of-mass energy and for each production mode: t-channel, tW, and s-channel. The combined t-channel cross-sections are 67.5 +/- 5.7 pb and 87.7 +/- 5.8 pb at = 7 and 8 TeV respectively. The combined tW cross-sections are 16.3 +/- 4.1 pb and 23.1 +/- 3.6 pb at = 7 and 8 TeV respectively. For the s-channel cross-section, the combination yields 4.9 +/- 1.4 pb at = 8 TeV. The square of the magnitude of the CKM matrix element V-tb multiplied by a form factor f(LV) is determined for each production mode and centre-of-mass energy, using the ratio of the measured cross-section to its theoretical prediction. It is assumed that the top-quark-related CKM matrix elements obey the relation |V-td|, |V-ts| << |V-tb|. All the |f(LV)V(tb)|(2) determinations, extracted from individual ratios at = 7 and 8 TeV, are combined, resulting in |f(LV)V(tb)| = 1.02 +/- 0.04 (meas.) +/- 0.02 (theo.). All combined measurements are consistent with their corresponding Standard Model predictions.
We bring together aspects of magnetism and superconductivity to gain new insights in their coexistence. We have investigated molecular beam epitaxy grown topological insulator doped with magnetic atoms (hosting electrons in two dimensions) when brought in proximity to a superconductor, e.g Josephson junction (JJ), measured at 20 mK.
We establish that a supercurrent can be induced in this class of material system. Magneto-transport of such devices at finite magnetic fields revealed curious “anti-hysteretic” behaviour which is understood as resulting from flux-focusing due to Meissner-like and screening current effects stemming from the superconducting leads.
The influence of in-plane magnetic field on the junction supercurrent shows reentrance behaviour, tunable with in-plane field as well as temperature. We interpret these results as the first unambiguous observation of proximity-Fulde-Ferrell-Larkin-Ovchinnikov state in the weak-link of the JJ driven by Zeeman field. The state is analogous to spatially inhomogeneous superconducting FFLO state but occurs in an intrinsically non superconducting material and is rather proximitized by superconductors into a supercurrent carrying state. The influence of rf-irradiation on the JJ dynamics near the reentrance regime is presented thereafter.
Later, to understand the microscopic transport in these devices, we replace one of the superconducting leads of the JJ with a normal metal like Au. Bias-voltage dependent study has established phase coherent Andreev transport in our wide cavity-type device in the ballistic regime visible through interference effects. The zero-bias conductance shows a crossover from localization type effect in the many modes regime to anti-localization type effect in the few mode regime. Finally, conductance near the bandgap, where transport is dominated by the helical edge modes, a striking 2e^{2}/h conductance is observed instead of 4e^{2}/h contradictory to existing predictions.
This thesis investigates the effects of electronic correlations – both for weak/intermediate as well as strong coupling – on different models. The focus is on systems that are topologically distinct from conventional metals and insulators. For a Dirac system, it is demonstrated that scattering rate and resistivity show a much stronger temperature dependence compared to the usual Fermi liquid. Consequently, scattering is much stronger suppressed close to the Fermi level. In the weak-coupling limit, these results are justified with analytic calculations, while dynamical mean-field theory calculations are used to confirm the stability of the results for coupling strengths up to the Mott transition. Upon doping the system, a crossover between this behavior with high exponents and a Fermi liquid-like behavior is found. For systems in the Mott phase, it is shown that the zeros of the Green’s function are closely related to the non-interacting band structure, thus preserving any symmetry-protected structures such as a Dirac cone in the dispersion. This result is derived ana-lytically in the strong-coupling limit and confirmed with numerical, non-perturbative many-body calculations using cluster extensions of dynamical mean-field theory, exact diagonalization and the slave-rotor method. For topological band structures, the zeros can obtain a topological character, leading to topological Mott insulators, which host zero edge-modes. The latter are spectroscopically invisible, but their presence can be revealed at interfaces with regular topological insulators via an annihilation of edge poles and edge zeros. These effects are shown for the one-dimensional Su–Schrieffer–Heeger model as well as the two-dimensional Bernevig-Hughes-Zhang and Kane-Mele models. It is further shown that gapless zeros are connected to gapless spinons, which leads to a spatial spin-charge separation at interfaces between topological insulators and topological Mott insulators. Along such an interface, only charge can be transported but no spin. Finally, it is shown how the knowledge of the zeros can be used to circumvent a breakdown of the Luttinger theorem.
Silicon pixel detectors are at the core of the current and planned upgrade of the ATLAS experiment at the LHC. Given their close proximity to the interaction point, these detectors will be exposed to an unprecedented amount of radiation over their lifetime. The current pixel detector will receive damage from non-ionizing radiation in excess of 10(15) 1 MeV n(eq)/cm(2), while the pixel detector designed for the high-luminosity LHC must cope with an order of magnitude larger fluence. This paper presents a digitization model incorporating effects of radiation damage to the pixel sensors. The model is described in detail and predictions for the charge collection efficiency and Lorentz angle are compared with collision data collected between 2015 and 2017 (<= 10(15) 1 MeV n(eq)/cm(2)).