535 Licht, Infrarot- und Ultraviolettphänomene
Refine
Has Fulltext
- yes (23)
Is part of the Bibliography
- yes (23)
Year of publication
Document Type
- Doctoral Thesis (14)
- Journal article (9)
Keywords
- Fluoreszenzmikroskopie (2)
- Nanooptik (2)
- OLED (2)
- Optische Antenne (2)
- dSTORM (2)
- interband cascade lasers (2)
- 3D microscopy (1)
- ARPES (1)
- Absorptionsspektroskopie (1)
- Adsorption (1)
Institute
Sonstige beteiligte Institutionen
- Arizona State University, Tempe, Arizona, USA (1)
- Fraunhofer-Institute for Applied Optics and Precision Engineering IOF Jena, Germany (1)
- Friedrich Schiller University Jena, Germany (1)
- Max Planck School of Photonics Jena, Germany (1)
- National Institute for Materials Science, Tsukuba, Japan (1)
- Siemens Corporate Technology Munich (1)
- University of Oldenburg, Germany (1)
- University of Science and Technology of China, Hefei, China (1)
Excitons in atomically thin transition-metal dichalcogenides (TMDs) have been established as an attractive platform to explore polaritonic physics, owing to their enormous binding energies and giant oscillator strength. Basic spectral features of exciton polaritons in TMD microcavities, thus far, were conventionally explained via two-coupled-oscillator models. This ignores, however, the impact of phonons on the polariton energy structure. Here we establish and quantify the threefold coupling between excitons, cavity photons, and phonons. For this purpose, we employ energy-momentum-resolved photoluminescence and spatially resolved coherent two-dimensional spectroscopy to investigate the spectral properties of a high-quality-factor microcavity with an embedded WSe\(_2\) van-der-Waals heterostructure at room temperature. Our approach reveals a rich multi-branch structure which thus far has not been captured in previous experiments. Simulation of the data reveals hybridized exciton-photon-phonon states, providing new physical insight into the exciton polariton system based on layered TMDs.
This PhD thesis addresses the photophysics of selected small organic molecules with the purpose of using them for efficient and even novel light sources. In particular, the studies presented focused on revealing the underlying exciton dynamics and determining the transition rates between different molecular states. It was shown how the specific properties and mechanisms of light emission in fluorescent molecules, molecules with phosphorescence or thermally activated delayed fluorescence (TADF), biradicals, and multichromophores can be utilized to build novel light-emitting devices. The main tool employed here was the analysis of the emitters’ photon statistics, i.e. the analysis of the temporal distribution of emitted photons, during electrical or optical excitation. In the introduction of this work, the working principle of an organic light-emitting diode (OLED) was introduced, while Chapter 2 provided the physical background of the relevant properties of organic molecules and their interaction with light. In particular, the occurrence of discrete energy levels in organic semiconductors and the process of spontaneous light emission were discussed. Furthermore, in this chapter a mathematical formalism was elaborated with the goal to find out what kind of information about the studied molecule can be obtained by analyzing its photon statistics. It was deduced that the intensity correlation function g (2)(t) contains information about the first two factorial moments of the photon statistics and that higher order factorial moments do not contain any additional information about the system under study if the system is always in the same state after the emission of a photon. To conclude the introductory part, Chapter 3 introduced the utilized characterization methods including confocal microscopy of single molecules, time correlated single photon counting and temperature dependent photoluminescence measurements. To provide the background necessary for an understanding of for the following result chapters, in Section 4.1 a closer look was taken at the phenomenon of blinking and photobleaching of individual molecules. For a squaraine-based fluorescent emitter rapid switching between a bright and dark state was observed during photoexcitation. Using literature transition rates between the molecular states, a consistent model was developed that is able to explain the distribution of the residence times of the molecule in the bright and dark states. In particular, an exponential and a power-law probability distribution was measured for the time the molecule resides in tis bright and dark state, respectively. This behavior as well as the change in photoluminescence intensity between the two states was conclusively explained by diffusion of residual oxygen within the sample, which had been prepared in a nitrogen-filled glovebox. For subsequent samples of this work, thin strips of atomic aluminum were deposited on the matrices to serve as oxygen getter material. This not only suppressed the efficiency of photobleaching, but also noticeably prolonged the time prior to photobleaching, which made many of the following investigations possible in the first place. For emitters used in displays, emission properties such as narrow-band luminescence and short fluorescence lifetimes are desired. These properties can be influenced not only by the emitter molecule itself, but also by the interaction with the chosen environment. Therefore, before focusing on the photophysics of individual small organic molecules, Section 4.2 highlighted the interaction of a perylene bisimide-based molecular species with its local environment in a disordered polymethyl methacrylate matrix. In a statistical approach, individual photophysical properties were measured for 32 single molecules and correlations in the variation of the properties were analyzed. This revealed how the local polarity of the molecules’ environment influences their photophysics. In particular, it was shown how an increase in local polarity leads to a red-shifted emission, narrower emission lines, broader vibronic splitting between different emission lines in combination with a smaller Huang-Rhys parameter, and a longer fluorescence lifetime. In the future, these results may help to embed individual chromophores into larger macromolecules to provide the chromophore with the optimal local environment to exhibit the desired emission properties. The next two sections focused on a novel and promising class of chromophores, namely linear coordinated copper complexes, synthesized in the group of Dr. Andreas Steffen at the Institute of Inorganic Chemistry at the University of Würzburg. In copper atoms, the d-orbitals are fully occupied, which prevents undesirable metal-centered d-d⋆ states, which tend to lie low in energy and recombine non-radiatively. Simultaneously, the copper atom provides a flexible coordination geometry, while complexes in their linear form are expected to exhibit the least amount of excited state distortions. Depending on the chosen ligands, these copper complexes can exhibit phosphorescence as well as temperature activated delayed fluorescence. In Section 4.3, a phosphorescent copper complex with a chlorine atom and a 1-(2,6-diisopropylphenyl)-3,3,5,5-tetramethyl-2-pyrrolidine-ylidene- ligand was tested for its suitability as an optically active material in an OLED. For this purpose, an OLED with a polyspirobifluorene-based copolymer matrix and the dopant at a concentration of 20 wt% was electrically excited. Deconvolution of the emission spectrum in contributions from the matrix and the dopant revealed that 60 % of the OLEDs emission was due to the copper complex. It was also shown that the shape of the emission spectrum of the copper complex remains unchanged upon incorporation into the OLED, but is red-shifted by about 233 meV. In Section 4.4, a second copper complex exhibiting thermally activated delayed fluorescence was analyzed. This complex comprised a carbazolate as well as a 2-(2,6- diisopropyl)-phenyl-1,1-diphenyl-isoindol-2-ium-3-ide ligand and was examined in the solid state and at the single-molecule level, where single photon emission was recorded up to an intensity of 78’000 counts per second. The evaluation of the second-order autocorrelation function of the emitted light proved an efficient transition between singlet and triplet excited states on the picosecond time scale. In the solid state, the temperature- dependent fluorescence decay of the complex was analyzed after pulsed photoexcitation in the temperature range between 300 K and 5 K. From these measurements, a small singlet-triplet energy gap of only 65 meV and a triplet sublevel splitting of 3.0 meV were derived. The transition rates between molecular states could also be determined. Here, the fast singlet decay time of τS1 = 9.8ns proved the efficient thermally activated delayed fluorescence process, which was demonstrated for the first time for this new class of copper(I) complexes thus. While the use of thermally activated delayed fluorescence is a potential way to harness otherwise long-living dark triplet states, radicals completely avoid dark triplet states. However, this usually comes with the huge drawback of the molecules being chemically unstable. Therefore, two chemically stable biradical species were synthesized in the framework of the DFG research training school GRK 2112 on Molecular biradicals: structure, properties and reactivity, by Yohei Hattori in the group of Prof. Dr. Christoph Lambert and Rodger Rausch in the group of Prof. Dr. Frank Würthner at the Institute of Organic Chemistry at the University of Würzburg, respectively. In Section 4.5, it was investigated how these molecules can be used in OLEDs. In the first isoindigo based biradical (6,6’-bis(3,5-di-tert-butyl-4-phenoxyl)-1,1’-bis(2- ethylhexyl)-[3,3’-biindolinyl-idene]-2,2’-dione) two tert-butyl moieties kinetically block chemical reactions at the place of the lone electrons and an electron-withdrawing core shifts the electron density into the center of the chromophore. With these properties, it was possible to realize a poly(p-phenylene vinylene) copolymer based OLED doped with the biradical and to observe luminescence during optical as well as electrical excitation. Analyzing shapes of the photo- and electroluminescence spectra at different doping concentrations, Förster resonance energy transfer was determined to be the dominant transition mechanism for excitons from the matrix to the biradical dopants. Likewise, OLEDs could be realized with the second diphenylmethylpyridine based birad- ical (4-(5-(bis(2,4,6-trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)-N-(4-(5-(bis(2,4,6- -trichlorophenyl)methyl)-4,6-dichloropyridin-2-yl)phenyl)-N-(4-methoxyphenyl)aniline) as dopant. In this biradical, chlorinated diphenylmethyl groups protect the two unpaired electrons. Photo- and electroluminescence spectra showed an emission in the near in- frared spectral range between 750 nm and 1000 nm. Also, Förster resonance energy trans- fer was the dominant energy transfer mechanism with an transfer efficiency close to 100 % even at doping concentrations of only 5 wt%. In addition to demonstrating the working OLEDs based in biradicals, the detection of luminescence of the two biradical species in devices also constitutes an important step toward making use of experimental techniques such as optically detected electron spin resonance, which could provide information about the electronic states of the emitter and their spin manifold during OLED operation. Another class of emitters studied are molecules in which several chromophores are co- valently linked to form a macrocyclic system. The properties of these multichromophores were highlighted in Section 4.6. Here, it was analyzed how the photophysical behavior of the molecules is affected by the covalent linking, which determines the interaction be- tween the chromophores. The first multichromophore, 2,2’-ditetracene, was synthesized by Lena Ross in the group of Prof. Dr. Anke Krüger at the Institute of Organic Chemistry at the University of Würzburg and was analyzed in this work both at the single-molecule level and in its aggregated crystalline form. While the single crystals were purified and grown in a vertical sublimation oven, the samples for the single molecule studies were prepared in matrices of amorphous polymethyl methacrylate and crystalline anthracene. Tetracene was analyzed concurrently to evaluate the effects of covalent linking. In samples where the distance between two molecules is sufficiently large, tetracene and 2,2’-ditracene show matching emission profiles with the only difference in the Franck-Condon factors and a de- creased photoluminescence decay time constant from 14 ns for tetracene to 5 ns for 2,2’- ditracene, which can be attributed to the increased density of the vibrational modes in 2,2’-ditracene. Evaluation of the photon statistics of individual 2,2’-ditracene molecules however showed that the system does not behave as two individual chromophores but as a collective state, preserving the spectral properties of the two tetracene chromophores. Complementary calculations performed by Marian Deutsch in the group of Prof. Dr. Bernd Engels at the Institute of Physical and Theoretical Chemistry at the University of Würzburg helped to understand the processes in the materials and could show that the electronic and vibronic modes of 2,2’-ditracene are superpositions of the modes occurring in tetracene. In contrast, single-crystalline 2,2’-ditetracene behaves significantly different than tetracene, namely exhibiting a red shift in photoluminescence of 150 meV, caused by an altered crys- talline packing that lowers the S1-state energy level. Temperature-dependent photolu- minescence measurements revealed a rich emission pattern from 2,2’-ditetracene single crystals. The mechanisms behind this were unraveled using photoluminescence lifetime density analysis in different spectral regions of the emission spectrum and at different tem- peratures. An excimer state was identified that is located about 5 meV below the S1-state, separated by a 1 meV barrier, and which can decay to the ground state with a time constant of 9 ns. Also, as the S1-state energy level is lowered below the E(S1) ≥ 2 ×E(T1) threshold, singlet fission is suppressed in 2,2’-ditetracene in contrast to tetracene. Therefore, at low temperatures, photoluminescence is enhanced by a factor of 46, which could make 2,2’- ditetracene a useful material for future applications in devices such as OLEDs or lasers. The second multichromophore species, para-xylylene bridged perylene bisimide macrocycles, were synthesized by Peter Spenst in the group of Prof. Dr. Frank Würthner at the Institute of Organic Chemistry at the University of Würzburg, by linking three and four perylene bisimides, respectively. To reveal the exciton dynamics in these macrocycles, highly diluted monomers as well as trimers and tetramers were doped into matrices of polymethyl methacrylate to create thin films in which individual macrocycles could be analyzed. The emission spectra of the macrocycles remained identical to those of the monomers, indicating weak coupling between the chromophores. Single photon emission could be verified for monomers as well as macrocycles, as exciton-exciton annihilation processes suppress the simultaneous emission of two photons from one macrocycle. Nevertheless, the proof of the occurrence of a doubly excited state was obtained by excitation power dependent photon statistics measurements. The formalism developed in the theory part of this thesis for calculating the photon statistics of multichromophore systems was used here to find a theoretical model that matches the experimental results. The main features of this model are a doubly excited state, fast singlet-singlet annihilation, and an efficient transition from the doubly excited state to a dark triplet state. The occurrence of triplet-triplet annihilation was demonstrated in a subsequent experiment in which the macrocycles were excited at a laser intensity well above the saturation intensity of the monomer species. In contrast to the monomers, the trimers and tetramers exhibited neither a complete dark state nor saturation of photoluminescence. Both processes, efficient singlet-singlet and triplet-triplet annihilation make perylene bisimide macrocycles exceptionally bright single photon emitters. These advantages were utilized to realize a room temperature electrically driven fluorescent single photon source. For this purpose, OLEDs were fabricated using polyvinylcarbazole and 2-tert-butylphenyl-5-biphenyl-1,3,4-oxadiazol blends as a host material for perylene bisimide trimers. Photon antibunching could be observed in both optically and electrically driven devices, representing the first demonstration of electrically driven single photon sources using fluorescent emitters at room temperature. As expected from the previous optical experiments, the electroluminescence of the molecules was exceptionally bright, emitting about 105 photons per second, which could be seen even by eye under the microscope. Finally, in the last section 4.7 of this thesis, two additional measurement schemes were proposed as an alternative to the measurement of the second-order correlation function g (2)(t) of single molecules, which only provides information about the first two factorial moments of the molecules’ photon statistics. In the first scheme, the g (3)(t) function was measured with three photodiodes, which is a consequential extension of the Hanbury Brown and Twiss measurement with two photodiodes. It was demonstrated how measuring the g (3)(t) function is able to identify interfering emitters with non-Poisson statistics in the experiment. The second setup was designed with an electro-optic modulator that repeatedly gen- erates photoexcitation in the form of a step function. The recording of luminescence transients for different excitation intensities yields the same results as the correspond- ing g (2)-functions measured on single emitters, both in their shape and in their depen- dence on excitation power. To demonstrate this concept, the TADF emitter TXO-TPA (2- [4-(diphenylamino)phenyl]-10,10-dioxide-9H-thioxanthen-9-one) was doped at a concen- tration of 10−4 wt% in a mCP (1,3-Bis(N-carbazolyl)benzene) matrix. This concentration was low enough that TXO-TPA molecules did not interact with each other, but an ensem- ble of molecules was still present in the detection volume. The intramolecular transition rates between singlet and triplet states of TXO-TPA could be derived with an error of at most 5 %. Other experimental techniques designed to obtain this information require ei- ther lengthy measurements on single molecules, where sample preparation is also often a challenge, or temperature-dependent fluorescence lifetime measurements, which require a cryostat, which in turn places constraints on the sample design used. In future, this ap- proach could establish a powerful method to study external factors influencing molecular transition rates. Overall, this thesis has introduced new molecular materials, revealed their photophys- ical properties, and demonstrated how they can be used to fabricate efficient and even novel light sources.
Verschiedene Konzepte der Röntgenmikroskopie haben sich mittlerweile im Labor etabliert und ermöglichen heute aufschlussreiche Einblicke in eine Vielzahl von Probensystemen. Der „Labormaßstab“ bezieht sich dabei auf Analysemethoden, die in Form von einem eigenständigen Gerät betrieben werden können. Insbesondere sind sie unabhängig von der Strahlerzeugung an einer Synchrotron-Großforschungseinrichtung und einem sonst kilometergroßen Elektronen-speicherring. Viele der technischen Innovationen im Labor sind dabei ein Transfer der am Synchrotron entwickelten Techniken. Andere wiederum basieren auf der konsequenten Weiterentwicklung etablierter Konzepte. Die Auflösung allein ist dabei nicht entscheidend für die spezifische Eignung eines Mikroskopiesystems im Ganzen. Ebenfalls sollte das zur Abbildung eingesetzte Energiespektrum auf das Probensystem abgestimmt sein. Zudem muss eine Tomographieanalage zusätzlich in der Lage sein, die Abbildungsleistung bei 3D-Aufnahmen zu konservieren.
Nach einem Überblick über verschiedene Techniken der Röntgenmikroskopie konzentriert sich die vorliegende Arbeit auf quellbasierte Nano-CT in Projektionsvergrößerung als vielversprechende Technologie zur Materialanalyse. Hier können höhere Photonenenergien als bei konkurrierenden Ansätzen genutzt werden, wie sie von stärker absorbierenden Proben, z. B. mit einem hohen Anteil von Metallen, zur Untersuchung benötigt werden. Das bei einem ansonsten idealen CT-Gerät auflösungs- und leistungsbegrenzende Bauteil ist die verwendete Röntgen-quelle. Durch konstruktive Innovationen sind hier die größten Leistungssprünge zu erwarten. In diesem Zuge wird erörtert, ob die Brillanz ein geeignetes Maß ist, um die Leistungsfähigkeit von Röntgenquellen zu evaluieren, welchen Schwierigkeiten die praktische Messung unterliegt und wie das die Vergleichbarkeit der Werte beeinflusst. Anhand von Monte-Carlo-Simulationen wird gezeigt, wie die Brillanz verschiedener Konstruktionen an Röntgenquellen theoretisch bestimmt und miteinander verglichen werden kann. Dies wird am Beispiel von drei modernen Konzepten von Röntgenquellen demonstriert, welche zur Mikroskopie eingesetzt werden können. Im Weiteren beschäftigt sich diese Arbeit mit den Grenzen der Leistungsfähigkeit von Transmissionsröntgenquellen. Anhand der verzahnten Simulation einer Nanofokus-Röntgenquelle auf Basis von Monte-Carlo und FEM-Methoden wird untersucht, ob etablierte Literatur¬modelle auf die modernen Quell-konstruktionen noch anwendbar sind. Aus den Simulationen wird dann ein neuer Weg abgeleitet, wie die Leistungsgrenzen für Nanofokus-Röntgenquellen bestimmt werden können und welchen Vorteil moderne strukturierte Targets dabei bieten.
Schließlich wird die Konstruktion eines neuen Nano-CT-Gerätes im Labor-maßstab auf Basis der zuvor theoretisch besprochenen Nanofokus-Röntgenquelle und Projektionsvergrößerung gezeigt, sowie auf ihre Leistungsfähigkeit validiert. Es ist spezifisch darauf konzipiert, hochauflösende Messungen an Materialsystemen in 3D zu ermöglichen, welche mit bisherigen Methoden limitiert durch mangelnde Auflösung oder Energie nicht umsetzbar waren. Daher wird die praktische Leistung des Gerätes an realen Proben und Fragestellungen aus der Material¬wissenschaft und Halbleiterprüfung validiert. Speziell die gezeigten Messungen von Fehlern in Mikrochips aus dem Automobilbereich waren in dieser Art zuvor nicht möglich.
Metallic nanostructures possess the ability to support resonances in the visible wavelength regime which are related to localized surface plasmons. These create highly enhanced electric fields in the immediate vicinity of metal surfaces. Nanoparticles with dipolar resonance also radiate efficiently into the far-field and hence serve as antennas for light. Such optical antennas have been explored during the last two decades, however, mainly as standalone units illuminated by external laser beams and more recently as electrically driven point sources, yet merely with basic antenna properties. This work advances the state of the art of locally driven optical antenna systems. As a first instance, the electric driving scheme including inelastic electron tunneling over a nanometer gap is merged with Yagi-Uda theory. The resulting antenna system consists of a suitably wired feed antenna, incorporating a tunnel junction, as well as several nearby parasitic elements whose geometry is optimized using analytical and numerical methods. Experimental evidence of unprecedented directionality of light emission from a nanoantenna is provided. Parallels in the performance between radiofrequency and optical Yagi-Uda arrays are drawn. Secondly, a pair of electrically connected antennas with dissimilar resonances is harnessed as electrodes in an organic light emitting nanodiode prototype. The organic material zinc phthalocyanine, exhibiting asymmetric injection barriers for electrons and holes, in conjunction with the electrode resonances, allows switching and controlling the emitted peak wavelength and directionality as the polarity of the applied voltage is inverted. In a final study, the near-field based transmission-line driving of rod antenna systems is thoroughly explored. Perfect impedance matching, corresponding to zero back-reflection, is achieved when the antenna acts as a generalized coherent perfect absorber at a specific frequency. It thus collects all guided, surface-plasmon mediated input power and transduces it to other nonradiative and radiative dissipation channels. The coherent interplay of losses and interference effects turns out to be of paramount importance for this delicate scenario, which is systematically obtained for various antenna resonances. By means of the here developed semi-analytical toolbox, even more complex nanorod chains, supporting topologically nontrivial localized edge states, are studied. The results presented in this work facilitate the design of complex locally driven antenna systems for optical wireless on-chip communication, subwavelength pixels, and loss-compensated integrated plasmonic nanocircuitry which extends to the realm of topological plasmonics.
Die Fluoreszenzmikroskopie ist eine vielseitig einsetzbare Untersuchungsmethode für biologische Proben, bei der Biomoleküle selektiv mit Fluoreszenzfarbstoffen markiert werden, um sie dann mit sehr gutem Kontrast abzubilden. Dies ist auch mit mehreren verschiedenartigen Zielmolekülen gleichzeitig möglich, wobei üblicherweise verschiedene Farbstoffe eingesetzt werden, die über ihre Spektren unterschieden werden können.
Um die Anzahl gleichzeitig verwendbarer Färbungen zu maximieren, wird in dieser Arbeit zusätzlich zur spektralen Information auch das zeitliche Abklingverhalten der Fluoreszenzfarbstoffe mittels spektral aufgelöster Fluoreszenzlebensdauer-Mikroskopie (spectrally resolved fluorescence lifetime imaging microscopy, sFLIM) vermessen. Dazu wird die Probe in einem Konfokalmikroskop von drei abwechselnd gepulsten Lasern mit Wellenlängen von 485 nm, 532nm und 640nm angeregt. Die Detektion des Fluoreszenzlichtes erfolgt mit einer hohen spektralen Auflösung von 32 Kanälen und gleichzeitig mit sehr hoher zeitlicher Auflösung von einigen Picosekunden. Damit wird zu jedem detektierten Fluoreszenzphoton der Anregungslaser, der spektrale Kanal und die Ankunftszeit registriert. Diese detaillierte multidimensionale Information wird von einem Pattern-Matching-Algorithmus ausgewertet, der das Fluoreszenzsignal mit zuvor erstellten Referenzpattern der einzelnen Farbstoffe vergleicht. Der Algorithmus bestimmt so für jedes Pixel die Beiträge der einzelnen Farbstoffe.
Mit dieser Technik konnten pro Anregungslaser fünf verschiedene Färbungen gleichzeitig dargestellt werden, also theoretisch insgesamt 15 Färbungen. In der Praxis konnten mit allen drei Lasern zusammen insgesamt neun Färbungen abgebildet werden, wobei die Anzahl der Farben vor allem durch die anspruchsvolle Probenvorbereitung limitiert war. In anderen Versuchen konnte die sehr hohe Sensitivität des sFLIM-Systems genutzt werden, um verschiedene Zielmoleküle voneinander zu unterscheiden, obwohl sie alle mit demselben Farbstoff markiert waren. Dies war möglich, weil sich die Fluoreszenzeigenschaften eines Farbstoffmoleküls geringfügig in Abhängigkeit von seiner Umgebung ändern. Weiterhin konnte die sFLIM-Technik mit der hochauflösenden STED-Mikroskopie (STED: stimulated emission depletion) kombiniert werden, um so hochaufgelöste zweifarbige Bilder zu erzeugen, wobei nur ein einziger gemeinsamer STED-Laser benötigt wurde.
Die gleichzeitige Erfassung von mehreren photophysikalischen Messgrößen sowie deren Auswertung durch den Pattern-Matching-Algorithmus ermöglichten somit die Entwicklung von neuen Methoden der Fluoreszenzmikroskopie für Mehrfachfärbungen.
Metallic nano-optical systems allow to confine and guide light at the nanoscale,
a fascinating ability which has motivated a wide range of fundamental as well
as applied research over the last two decades. While optical antennas provide
a link between visible radiation and localized energy, plasmonic waveguides
route light in predefined pathways. So far, however, most experimental demonstrations
are limited to purely optical excitations, i.e. isolated structures are
illuminated by external lasers. Driving such systems electrically and generating
light at the nanoscale, would greatly reduce the device footprint and pave the
road for integrated optical nanocircuitry. Yet, the light emission mechanism as
well as connecting delicate nanostructures to external electrodes pose key challenges
and require sophisticated fabrication techniques. This work presents various
electrically connected nano-optical systems and outlines a comprehensive
production line, thus significantly advancing the state of the art. Importantly,
the electrical connection is not just used to generate light, but also offers new
strategies for device assembly. In a first example, nanoelectrodes are selectively
functionalized with self-assembled monolayers by charging a specific electrode.
This allows to tailor the surface properties of nanoscale objects, introducing an
additional degree of freedom to the development of metal-organic nanodevices.
In addition, the electrical connection enables the bottom-up fabrication of tunnel
junctions by feedback-controlled dielectrophoresis. The resulting tunnel barriers
are then used to generate light in different nano-optical systems via inelastic
electron tunneling. Two structures are discussed in particular: optical Yagi-Uda
antennas and plasmonic waveguides. Their refined geometries, accurately fabricated
via focused ion beam milling of single-crystalline gold platelets, determine
the properties of the emitted light. It is shown experimentally, that Yagi-Uda
antennas radiate light in a specific direction with unprecedented directionality,
while plasmonic waveguides allow to switch between the excitation of two
propagating modes with orthogonal near-field symmetry. The presented devices
nicely demonstrate the potential of electrically connected nano-optical systems,
and the fabrication scheme including dielectrophoresis as well as site-selective
functionalization will inspire more research in the field of nano-optoelectronics.
In this context, different future experiments are discussed, ranging from the
control of molecular machinery to optical antenna communication.
Laser spectroscopic gas sensing has been applied for decades for several applications
as atmospheric monitoring, industrial combustion gas analysis or fundamental research.
The availability of new laser sources in the mid-infrared opens the spectral fingerprint
range to the technology where multiple molecules possess their fundamental ro-vibrational
absorption features that allow very sensitive detection and accurate discrimination of
the species. The increasing maturity of quantum cascade lasers that cover this highly
interesting spectral range motivated this research to gain fundamental knowledge about
the spectra of hydrocarbon gases in pure composition and in complex mixtures as they
occur in the petro-chemical industry. The long-term target of developing accurate and fast
hydrocarbon gas analyzers, capable of real-time operation while enabling feedback-loops,
would lead to a paradigm change in this industry.
This thesis aims to contribute to a higher accuracy and more comprehensive understanding
of the sensing of hydrocarbon gas mixtures. This includes the acquisition of yet
unavailable high resolution and high accuracy reference spectra of the respective gases,
the investigation of their spectral behavior in mixtures due to collisional broadening of
their transitions and the verification of the feasibility to quantitatively discriminate the
spectra when several overlapping species are simultaneously measured in gas mixtures.
To achieve this knowledge a new laboratory environment was planned and built up to
allow for the supply of the individual gases and their arbitrary mixing. The main element
was the development of a broadly tunable external-cavity quantum cascade laser based
spectrometer to record the required spectra. This also included the development of a new
measurement method to obtain highly resolved and nearly gap-less spectral coverage as
well as a sophisticated signal post-processing that was crucial to achieve the high accuracy
of the measurements. The spectroscopic setup was used for a thorough investigation of
the spectra of the first seven alkanes as of their mixtures. Measurements were realized
that achieved a spectral resolution of 0.001 cm-1 in the range of 6-11 µm while ensuring an
accuracy of 0.001 cm-1 of the spectra and attaining a transmission sensitivity of 2.5 x 10-4
for long-time averaging of the acquired spectra.
These spectral measurements accomplish a quality that compares to state-of-the art
spectral databases and revealed so far undocumented details of several of the investigated
gases that have not been measured with this high resolution before at the chosen measurement
conditions. The results demonstrate the first laser spectroscopic discrimination of a
seven component gas mixture with absolute accuracies below 0.5 vol.% in the mid-infrared
provided that a sufficiently broad spectral range is covered in the measurements. Remaining
challenges for obtaining improved spectral models of the gases and limitations of the
measurement accuracy and technology are discussed.
Stationäre Gasturbinen können von großer Bedeutung für die Verlangsamung des Klima-wandels und bei der Bewältigung der Energiewende sein. Für die Weiterentwicklung von Gasturbinen zu höheren Betriebstemperaturen und damit einhergehend zu höheren Wirkungs-graden werden berührungslose Messverfahren zur Ermittlung der Oberflächentemperatur von Turbinenschaufeln und der Gastemperatur der heißen Verbrennungsgase während des Be-triebs benötigt. Im Rahmen dieser Arbeit werden daher Methoden der berührungslosen Tem-peraturmessung unter Verwendung von Infrarotstrahlung untersucht.
Die berührungslose Messung der Oberflächentemperatur moderner Turbinenschaufeln muss aufgrund derer infrarot-optischer Oberflächeneigenschaften im Wellenlängenbereich des mitt-leren Infrarots durchgeführt werden, in welchem die Turbinenbrenngase starke Absorptions-banden aufweisen. Zur Entwicklung eines adäquaten Strahlungsthermometers für diesen Zweck wurden im Rahmen dieser Arbeit daher durch Ermittlung von Transmissionsspektren von Kohlenstoffdioxid und Wasserdampf bei hohen Temperaturen und Drücken in einer ei-gens hierfür konstruierten Heißgas-Messzelle zunächst Wellenlängenbereiche identifiziert, in welchen die geplanten Messungen möglich sind. Anschließend wurde der Prototyp eines ent-sprechend konfigurierten Strahlungsthermometers im Zuge des Testlaufes einer vollskaligen Gasturbine erfolgreich erprobt.
Weiterhin wurden im Rahmen dieser Arbeit zwei mögliche Verfahren zur berührungslosen Gastemperaturmessung untersucht. Das erste untersuchte Verfahren setzt ebenfalls auf Strah-lungsthermometrie. Dieses Verfahren sieht vor, aufgrund der Temperaturabhängigkeit des spektralen Transmissionsgrades in den Randbereichen von gesättigten Absorptionsbanden von Gasen aus der in diesen Bereichen transmittierten spektralen Strahldichte auf die Gastempera-tur zu schließen. Im Rahmen dieser Arbeit wurden Voruntersuchungen für dieses Tempera-turmessverfahren durchgeführt. So konnten auf der Grundlage von experimentell ermittelten Transmissionsspektren von Kohlenstoffdioxid bei Drücken zwischen 5 kPa und 600 kPa und Gastemperaturen zwischen Raumtemperatur und 1073 K für das geplante Verfahren nutzbare Wellenlängenintervalle insbesondere im Bereich der Kohlenstoffdioxid-Bande bei 4,26 µm identifiziert werden.
Das zweite im Rahmen dieser Arbeit untersuchte Verfahren zur berührungslosen Gastem-peraturmessung basiert auf der Temperaturabhängigkeit der Wellenlängenposition der Trans-missionsminima der Absorptionsbanden von infrarot-aktiven Gasen. Im Hinblick darauf wur-de dieses Phänomen anhand von experimentell bestimmten hochaufgelösten Transmissions-spektren von Kohlenstoffdioxid überprüft. Weiterhin wurden mögliche Wellenlängenbereiche identifiziert und hinsichtlich ihrer Eignung für das geplante Verfahren charakterisiert. Als am vielversprechendsten erwiesen sich hierbei Teilbanden in den Bereichen um 2,7 µm und um 9,2 µm. Unter Beimischung von Stickstoff mit Partialdrücken von bis zu 390 kPa erwies sich zudem auch die Bande bei 4,26 µm als geeignet.
Die im Rahmen dieser Arbeit experimentell ermittelten Transmissionsspektren konnten dar-über hinaus schließlich durch Vergleich mit entsprechenden HITRAN-Simulationen verifiziert werden.
Monolayers of transition metal dichalcogenide materials emerged as a new material class to study excitonic effects in solid state, as they benefit from enormous Coulomb correlations between electrons and holes. Especially in WSe\(_{2}\), sharp emission features have been observed at cryogenic temperatures, which act as single photon sources. Tight exciton localization has been assumed to induce an anharmonic excitation spectrum; however, the evidence of the hypothesis, namely the demonstration of a localized biexciton, is elusive. Here we unambiguously demonstrate the existence of a localized biexciton in a monolayer of WSe\(_{2}\), which triggers an emission cascade of single photons. The biexciton is identified by its time-resolved photoluminescence, superlinearity and distinct polarization in micro-photoluminescence experiments. We evidence the cascaded nature of the emission process in a cross-correlation experiment, which yields a strong bunching behaviour. Our work paves the way to a new generation of quantum optics experiments with two-dimensional semiconductors.
Nanoelectronics is an essential technology for down-scaling beyond the limit of silicon-based electronics. Single-Wall Carbon Nanotubes (SWNT) are semiconducting components that exhibit a large variety of properties that make them usable for sensing, telecommunication, or computational tasks. Due to their high surface to volume ratio, carbon nanotubes are strongly affected by molecular adsorptions, and almost all properties depend on surface adsorption. SWNT with smaller diameters (0.7-0.9nm) show a stronger sensitivity to surface effects. An optimized synthesis route was developed to produce these nanotubes directly. They were produced with a clean surface, high quality, and large lengths of 2 μ m. The results complement previous studies on larger diameters (0.9-1.4nm). They allow performing statistically significant assumptions for a perfect nanotube, which is selected from a subset of nanotubes with good emission intensity, and high mechanical durability. The adsorption of molecules on the surface of carbon nanotubes influences the motion and binding strength of chargeseparated states in this system. To gain insight into the adsorption processes on the surface with a minimum of concurrent overlapping effects, a microscopic setup, and a measurement technique were developed. The system was estimated to exhibit excellent properties like long exciton diffusion lengths (>350nm), and big exciton sizes (8.5(5)nm), which was substantiated by a simulation. We studied the adsorption processes at the surface of Single-Wall Carbon Nanotubes for molecules in the gas phase, solvent molecules, and surfactant molecules. The experiments were all carried out on suspended individualized carbon nanotubes on a silicon wafer substrate. The experiments in the gas-phase showed that the excitonic emission energy and intensity experiences a rapid blue shift during observation. This shift was associated with the spontaneous desorption of large clusters of gaseous molecules caused by laser heat up. The measurement of this desorption was essential for creating a reference to an initially clean surface and allows us to perform a comparison with previous measurements on this topic. Furthermore, the adsorption of hydrogen on the nanotube surface at high temperatures was investigated. It was found that a new emission mode arises slightly red-shifted to the excitonic emission in these systems. The new signal is almost equally strong as the main excitonic peak and was associated with the brightening of dark excitons at sp3-defects through a K-phonon assisted pathway. The finding is useful for the direct synthesis of spintronic devices as these systems are known to act as single-photon emitters. The suspended nanotubes were further studied to estimate the effect of solvent adsorption on the excitonic states during nanotube dispersion for each nanotube individually. A significant quantum yield loss is observable for hexane and acetonitrile, while the emission intensity was found to be the strongest in toluene. The reference to a clean surface allowed us to estimate the exact influence of the dielectric environment of adsorbing solvents on the excitonic emission energy. Solvent adsorption was found to lead to an energy shift that is almost twice as high as suggested in previous studies. The amount of this energy shift, however, was comparably similar for all solvents, which suggests that the influence of the distinct dielectric constant in the outer environment less significantly influences the energy shift than previously thought. An interesting phenomenon was found when using acetonitrile as a solvent, which leads to greatly enhanced emission properties. The emission is more than twice as high as in the same air-suspended nanotubes, which suggests a process that depends on the laser intensity. In this study, it was reasonably explained how an energy down-conversion is possible through the coupling of the excitonic states with solvent vibrations. The strength of this coupling, however, also suggests adsorptions to the inside of the tubular nanotube structure leading to a coupled vibration of linear acetonitrile molecules that are adsorbed to the inner surface. The findings are important for the field of nanofluidics and provide an excellent system for efficient energy down-conversion in the transmission window of biological tissue. Having separated the pure effect of solvent adsorption allowed us to study the undisturbed molecular adsorption of polymers in these systems. The addition of polyfluorene polymer leads to a slow but stepwise intensity increase. The intensity increase is overlapping with a concurrent process that leads to an intensity decrease. Unfortunately, observing the stepwise process has a low spacial resolution of only 100-250nm, which is in the range of the exciton diffusion length in these systems and hinders detailed analysis. The two competing and overlapping processes processes are considered to originate from slow π-stacking and fast side-chain binding. Insights into this process are essential for selecting suitably formed polymers. However, the findings also emphasize the importance of solvent selection during nanotube dispersion since solvent effects were proven to be far more critical on the quantum yield in these systems. These measurements can shed light on the ongoing debate on polymers adsorption during nanotube individualization and allow us to direct the discussion more towards the selection of suitable solvents. This work provides fundamental insights into the adsorption of various molecules on the surface of individually observed suspended Single-Wall Carbon Nanotubes. It allows observing the adsorption of individual molecules below the optical limit in the solid, liquid, and gas phases. Nanotubes are able to act as sensing material for detecting changes in their direct surrounding. These fundamental findings are also crucial for increasing the quantum yield of solvent-dispersed nanotubes. They can provide better light-harvesting systems for microscopy in biological tissue and set the base for a more efficient telecommunication infrastructure with nano-scale spintronics devices and lasing components. The newly discovered solvent alignment in the nanotube surrounding can potentially also be used for supercapacitors that are needed for caching the calculation results in computational devices that use polymer wrapped nanotubes as transistors. Although fundamental, these studies develop a strategy to enlighten this room that is barely only visible at the bottom of the nano-scale.