## 539 Moderne Physik

### Refine

#### Has Fulltext

- yes (180)

#### Is part of the Bibliography

- yes (180)

#### Year of publication

#### Document Type

- Journal article (134)
- Doctoral Thesis (45)
- Working Paper (1)

#### Keywords

- Hadron-Hadron scattering (experiments) (28)
- High energy physics (25)
- ATLAS detector (20)
- hadron-hadron scattering (15)
- proton-proton collision (14)
- Higgs boson (12)
- physics (9)
- systematic uncertainty (9)
- Topologischer Isolator (8)
- jet energy scale (8)

#### Institute

#### Sonstige beteiligte Institutionen

- Arizona State University, Tempe, Arizona, USA (1)
- Fraunhofer-Institute for Applied Optics and Precision Engineering IOF Jena, Germany (1)
- Friedrich Schiller University Jena, Germany (1)
- LMU München (1)
- Ludwig-Maximilians-Universität München, Fakultät für Physik (1)
- Max Planck School of Photonics Jena, Germany (1)
- National Institute for Materials Science, Tsukuba, Japan (1)
- Stanford University (1)
- Technical University of Denmark (1)
- University of Oldenburg, Germany (1)

#### ResearcherID

- N-7500-2014 (1)

Since the prediction of the quantum spin Hall effect in graphene by Kane and Mele, \(Z_2\) topology in hexagonal monolayers is indissociably linked to high-symmetric honeycomb lattices. This thesis breaks with this paradigm by focusing on topological phases in the fundamental two-dimensional hexagonal crystal, the triangular lattice. In contrast to Kane-Mele-type systems, electrons on the triangular lattice profit from a sizable, since local, spin-orbit coupling (SOC) and feature a non-trivial ground state only in the presence of inversion symmetry breaking. This tends to displace the valence charge form the atomic position. Therefore, all non-trivial phases are real-space obstructed. Inspired by the contemporary conception of topological classification of electronic systems, a comprehensive lattice and band symmetry analysis of insulating phases of a \(p\)-shell on the triangular lattice is presented. This reveals not only the mechanism at the origin of band topology, the competition of SOC and symmetry breaking, but sheds also light on the electric polarization arising from a displacement of the valence charge centers from the nuclei, i. e., real-space obstruction. In particular, the competition of SOC versus horizontal and vertical reflection symmetry breaking gives rise to four topologically distinct insulating phases: two kinds of quantum spin Hall insulators (QSHI), an atomic insulator and a real-space obstructed higher-order topological insulator. The theoretical analysis is complemented with state-of-the-art first principles calculations and experiments on trigonal monolayer adsorbate systems. This comprises the recently discovered triangular QSHI indenene, formed by In atoms, and focuses on its topological classification and real-space obstruction. The analysis reveals Kane-Mele-type valence bands which profit from the atomic SOC of the triangular lattice. The realization of a HOTI is proposed by reducing SOC by considering lighter adsorbates. Further the orbital Rashba effect is analyzed in AgTe, a consequence of mirror symmetry breaking, the formation of local angular momentum polarization and SOC. As an outlook beyond topology, the Fermi surface and electronic susceptibility of Group V adsorbates on silicon carbide are investigated.
In summary, this thesis elucidates the interplay of symmetry breaking and SOC on the triangular lattice, which can promote non-trivial insulating phase.

This doctoral thesis investigates magneto-optical properties of mercury telluride layers grown tensile strained on cadmium telluride substrates. Here, layer thicknesses start above the usual quantum well thickness of about 20 nm and have a upper boundary around 100 nm due to lattice relaxation effects. This kind of layer system has been attributed to the material class of three-dimensional topological insulators in numerous publications. This class stands out due to intrinsic boundary states which cross the energetic band gap of the layer's bulk.
In order to investigate the band structure properties in a narrow region around the Fermi edge, including possible boundary states, the method of highly precise time-domain Terahertz polarimetry is used. In the beginning, the state of the art of Teraherz technology at the start of this project is discussed, moving on to a detailed description and characterization of the self-built measurement setup. Typical standard deviation of a polarization rotation or ellipticity measurement are on the order of 10 to 100 millidegrees, according to the transmission strength through investigated samples. A range of polarization spectra, depending on external magnetic fields up to 10 Tesla, can be extracted from the time-domain signal via Fourier transformation.
The identification of the actual band structure is done by modeling possible band structures by means of the envelope function approximation within the framework of the k·p method. First the bands are calculated based on well-established model parameters and from them the possible optical transitions and expected ellipticity spectra, all depending on external magnetic fields and the layer's charge carrier concentration. By comparing expected with measured spectra, the validity of k·p models with varying depths of detail is analyzed throughout this thesis. The rich information encoded in the ellipitcity spectra delivers key information for the attribution of single optical transitions, which are not part of pure absorption spectroscopy. For example, the sign of the ellipticity signals is linked to the mix of Landau levels which contribute to an optical transition, which shows direct evidence for bulk inversion asymmetry effects in the measured spectra.
Throughout the thesis, the results are compared repeatedly with existing publications on the topic. It is shown that the models used there are often insufficient or, in worst case, plainly incorrect. Wherever meaningful and possible without greater detours, the differences to the conclusions that can be drawn from the k·p model are discussed.
The analysis ends with a detailed look on remaining differences between model and measurement. It contains the quality of model parameters as well as different approaches to integrate electrostatic potentials that exist in the structures into the model.
An outlook on possible future developments of the mercury cadmium telluride layer systems, as well as the application of the methods shown here onto further research questions concludes the thesis.

Excitons in atomically thin transition-metal dichalcogenides (TMDs) have been established as an attractive platform to explore polaritonic physics, owing to their enormous binding energies and giant oscillator strength. Basic spectral features of exciton polaritons in TMD microcavities, thus far, were conventionally explained via two-coupled-oscillator models. This ignores, however, the impact of phonons on the polariton energy structure. Here we establish and quantify the threefold coupling between excitons, cavity photons, and phonons. For this purpose, we employ energy-momentum-resolved photoluminescence and spatially resolved coherent two-dimensional spectroscopy to investigate the spectral properties of a high-quality-factor microcavity with an embedded WSe\(_2\) van-der-Waals heterostructure at room temperature. Our approach reveals a rich multi-branch structure which thus far has not been captured in previous experiments. Simulation of the data reveals hybridized exciton-photon-phonon states, providing new physical insight into the exciton polariton system based on layered TMDs.

Plasmonic nanostructures are considered promising candidates for essential components of integrated quantum technologies because of their ability to efficiently localize broad-band electromagnetic fields on the nanoscale. The resulting local near field can be understood as a spatial superposition of spectrally different plasmon-polariton modes due to the spectrally broad optical excitation, and thus can be described as a classical wave packet. Since plasmon polaritons, in turn, can transmit and receive non-classical light states, the exciting question arises to what extent they have to be described as quantum mechanical wave packets, i.e. as a superposition of different quantum states.
But how to probe, characterize and eventually manipulate the quantum state of such plasmon polaritons? Up to now, probing at room temperatures relied completely on analyzing quantum optical properties of the corresponding in-going and out-going far-field photon modes. However, these methods so far only allow a rather indirect investigation of the plasmon-polariton quantum state by means of transfer into photons. Moreover, these indirect methods lack spatial resolution and therefore do not provide on-site access to the plasmon-polariton quantum state. However, since the spectroscopic method of coherent two-dimensional (2D) nanoscopy offers the capability to follow the plasmon-
polariton quantum state both in Hilbert space and in space and time domain a complete characterization of the plasmon polariton is possible.
In this thesis a versatile coherent 2D nanoscopy setup is presented combining spectral tunability and femtosecond time resolution with spatial resolution on the nanometer scale due to the detection of optically excited nonlinear emitted electrons via photoemission electron microscopy (PEEM). Optical excitation by amplitude- and phase-shaped, systematically-modified and interferometric-stable multipulse sequences is realized, and characterized via Fourier-transform spectral interferometry (FTSI). This linear technique enables efficient data acquisition in parallel to a simultaneously performed experiment. The full electric-field reconstruction of every generated multipulse sequence is used to analyze the effect of non-ideal pulse sequences on the two-dimensional spectral data of population-based multidimensional spectroscopy methods like, e.g., the coherent 2D nanoscopy applied in this thesis. Investigation of the spatially-resolved nonlinear electron emission yield from plasmonic gold nanoresonators by coherent 2D nanoscopy requires a quasi-particle treatment of the addressed plasmon-polariton mode and development of a quantum model to adequately describe the plasmon-assisted multi-quantum electron emission from nanostructures. Good agreement between simulated and experimental data enables to connect certain spectral features to superpositions of non-adjacent plasmon-polariton quantum states, i.e, non-adjacent occupation-number states of the underlying quantized, harmonic oscillator, thus direct probing of the plasmon-polariton quantum wave packet at the location of the nanostructure.
This is a necessary step to locally control and manipulate the plasmon-polariton quantum state and thus of general interest for the realization of nanoscale quantum optical devices.

Magnetic systems underlie the physics of quantum mechanics when reaching the limit of few or even single atoms. This behavior limits the minimum size of magnetic bits in data storage devices as spontaneous switching of the magnetization leads to the loss of information. On the other hand, exactly these quantum mechanic properties allow to use such systems in quantum computers. Proposals to realize qubits involve the spin states of single atoms as well as topologically protected Majorana zero modes, that emerge in coupled systems of magnetic atoms in proximity to a superconductor. In order to implement and control the proposed applications, a detailed understanding of atomic spins and their interaction with the environment is required.
In this thesis, two different systems of magnetic adatoms coupled to metallic and superconducting surfaces are studied by means of scanning tunneling microscopy (STM) and spectroscopy: Co atoms on the clean Cu(111) were among the first systems exhibiting signatures of the Kondo effect in an individual atom. Yet, a recent theoretical work proposed an alternative interpretation of these early experimental results, involving a newly described many-body state. Spin-averaged and -polarized experiments in high magnetic fields presented in this thesis confirm effects beyond the Kondo effect that determine the physics in these Co atoms and suggest a potentially even richer phenomenology than proposed by theory.
The second studied system are single and coupled Fe atoms on the superconducting Nb(110) surface. Magnetic impurities on superconducting surfaces locally induce Yu-Shiba-Rusinov (YSR) states inside the superconducting gap due to their pair breaking potential. Coupled systems of such impurities exhibit YSR bands and, if the bands cross the Fermi level such that the band structure is inverted, host Majorana zero modes. Using the example of Fe atoms on Nb(110), the YSR states’ dependence on the adatom–substrate interaction as well as the interatomic YSR state coupling is investigated. In the presence of oxygen on the Nb surface, the adatom–substrate interaction is shown to be heavily modified and the YSR states are found to undergo a quantum phase transition, which can be directly linked to a modified Kondo screening.
STM tips functionalized with CO molecules allow to resolve self-assembled one-dimensional chains of Fe atoms on the clean Nb(110) surface to study the YSR states’ coupling. Mapping out the states’ wave functions reveals their symmetry, which is shown to alter as a function of the states’ energy and number of atoms in the chain. These experimental results are reproduced in a simple tight-binding model, demonstrating a straightforward possibility to describe also more complex YSR systems toward engineered, potentially topologically non-trivial states.

Explaining the baryon asymmetry of the Universe has been a long-standing problem of particle physics, with the consensus being that new physics is required as the Standard Model (SM) cannot resolve this issue. Beyond the Standard Model (BSM) scenarios would need to incorporate new sources of \(CP\) violation and either introduce new departures from thermal equilibrium or modify the existing electroweak phase transition. In this thesis, we explore two approaches to baryogenesis, i.e. the generation of this asymmetry.
In the first approach, we study the two-particle irreducible (2PI) formalism as a means to investigate non-equilibrium phenomena. After arriving at the renormalised equations of motions (EOMs) to describe the dynamics of a phase transition, we discuss the techniques required to obtain the various counterterms in an on-shell scheme. To this end, we consider three truncations up to two-loop order of the 2PI effective action: the Hartree approximation, the scalar sunset approximation and the fermionic sunset approximation. We then reconsider the renormalisation procedure in an \(\overline{\text{MS}}\) scheme to evaluate the 2PI effective potential for the aforementioned truncations. In the Hartree and the scalar sunset approximations, we obtain analytic expressions for the various counterterms and subsequently calculate the effective potential by piecing together the finite contributions. For the fermionic sunset approximation, we obtain similar equations for the counterterms in terms of divergent parts of loop integrals. However, these integrals cannot be expressed in an analytic form, making it impossible to evaluate the 2PI effective potential with the fermionic contribution. Our main results are thus related to the renormalisation programme in the 2PI formalism: \( (i) \)the procedure to obtain the renormalised EOMs, now including fermions, which serve as the starting point for the transport equations for electroweak baryogenesis and \( (ii) \) the method to obtain the 2PI effective potential in a transparent manner.
In the second approach, we study baryogenesis via leptogenesis. Here, an asymmetry in the lepton sector is generated, which is then converted into the baryon asymmetry via the sphaleron process in the SM. We proceed to consider an extension of the SM along the lines of a scotogenic framework. The newly introduced particles are charged odd under a \(\mathbb{Z}_2\) symmetry, and masses for the SM neutrinos are generated radiatively. The \(\mathbb{Z}_2\) symmetry results in the lightest BSM particle being stable, allowing for a suitable dark matter (DM) candidate. Furthermore, the newly introduced heavy Majorana fermionic singlets provide the necessary sources of \(CP\) violation through their Yukawa interactions and their out-of-equilibrium decays produce a lepton asymmetry. This model is constrained from a wide range of observables, such as consistency with neutrino oscillation data, limits on branching ratios of charged lepton flavour violating decays, electroweak observables and obtaining the observed DM relic density. We study leptogenesis in this model in light of the results of a Markov chain Monte Carlo scan, implemented in consideration of the aforementioned constraints. Successful leptogenesis in this model, to account for the baryon asymmetry, then severely constrains the available parameter space.

A plethora of novel material concepts are currently being investigated in the condensed matter research community. Some of them hold promise to shape our everyday world in a way that silicon-based semiconductor materials and the related development of semiconductor devices have done in the past. In this regard, the last decades have witnessed an explosion of studies concerned with so called ‘’quantum materials’’ with emerging novel functionalities. These could eventually lead to new generations of electronic and/or spintronic devices. One particular material class, the so called topological materials, play a central role. As far as their technological applicability is concerned, however, they are still facing outstanding challenges to date.
Predicted for the first time in 2005 and experimentally verified in 2007, two-dimensional topological insulators (2D TIs) (a.k.a. quantum spin Hall insulators) exhibit the outstanding property of hosting spin-polarized metallic states along the boundaries of the insulating 2D bulk material, which are protected from elastic single-particle backscattering and give rise to the quantum spin Hall effect (QSHE). Owing to these peculiar properties the QSHE holds promise for dissipationless charge and/or spin transport. However, also in today’s best 2D TIs the observation of the QSHE is still limited to cryogenic temperatures of maximum 100 K. Here, the discovery of bismuthene on SiC(0001) has marked a milestone towards a possible realization of the QSHE at or beyond room-temperature owing to the massively increased electronic bulk energy gap on the order of 1 eV. This thesis is devoted to and motivated by the goal of advancing its synthesis and to build a deeper understanding of its one-particle and two-particle electronic properties that goes beyond prior work.
Regarding the aspect of material synthesis, an improved growth procedure for bismuthene is elaborated that increases the domain size of the material considerably (by a factor of ≈ 3.2 - 6.5 compared to prior work). The improved film quality is an important step towards any future device application of bismuthene, but also facilitates all further basic studies of this material.
Moreover, the deposition of magnetic transition metals (Mn and Co) on bismuthene is investigated. Thereby, the formation of ordered magnetic Bi-Mn/Co alloys is realized, their structure is resolved with scanning tunneling microscopy (STM), and their pristine electronic properties are resolved with scanning tunneling spectroscopy (STS) and photoemission spectroscopy (PES). It is proposed that these ordered magnetic Bi-Mn/Co-alloys offer the potential to study the interplay between magnetism and topology in bismuthene in the future.
In this thesis, a wide variety of spectroscopic techniques are employed that aim to build an understanding of the single-particle, as well as two-particle level of description of bismuthene's electronic structure. The techniques involve STS and angle-resolved PES (ARPES) on the one hand, but also optical spectroscopy and time-resolved ARPES (trARPES), on the other hand. Moreover, these experiments are accompanied by advanced numerical modelling in form of GW and Bethe-Salpeter equation calculations provided by our theoretical colleagues. Notably, by merging many experimental and theoretical techniques, this work sets a benchmark for electronic structure investigations of 2D materials in general.
Based on the STS studies, electronic quasi-particle interferences in quasi-1D line defects in bismuthene that are reminiscent of Fabry-Pérot states are discovered. It is shown that they point to a hybridization of two pairs of helical boundary modes across the line defect, which is accompanied by a (partial) lifting of their topological protection against elastic single-particle backscattering.
Optical spectroscopy is used to reveal bismuthene's two-particle elecronic structure. Despite its monolayer thickness, a strong optical (two-particle) response due to enhanced electron-hole Coulomb interactions is observed. The presented combined experimental and theoretical approach (including GW and Bethe-Salpeter equation calculations) allows to conclude that two prominent optical transitions can be associated with excitonic transitions derived from the Rashba-split valence bands of bismuthene. On a broader scope this discovery might promote further experiments to elucidate links of excitonic and topological physics.
Finally, the excited conduction band states of bismuthene are mapped in energy and momentum space employing trARPES on bismuthene for the first time. The direct and indirect band gaps are succesfully extracted and the effect of excited charge carrier induced gap-renormalization is observed. In addition, an exceptionally fast excited charge carrier relaxation is identified which is explained by the presence of a quasi-metallic density of states from coupled topological boundary states of domain boundaries.

The last years have witnessed an exciting scientific quest for intriguing topological phenomena in time-dependent quantum systems. A key to many manifestations of topology in dynamical systems relies on the effective dimensional extension by time-periodic drives. An archetypal example is provided by the Thouless pump in one spatial dimension, where a robust and quantized charge transport can be described in terms of an integer quantum Hall effect upon interpreting time as an extra dimension. Generalizing this fundamental concept to multifrequency driving, a variety of higher-dimensional topological models can be engineered in dynamical synthetic dimensions, where the underlying topological classification leads to quantized pumping effects in the associated lower-dimensional time-dependent systems.
In this Thesis, we explore how correlations profoundly impact the topological features of dynamical synthetic quantum materials. More precisely, we demonstrate that the interplay of interaction and dynamical synthetic dimension gives rise to striking topological phenomena that go beyond noninteracting implementations. As a starting point, we exploit the Floquet counterpart of an integer quantum Hall scenario, namely a two-level system driven by two incommensurate frequencies. In this model, the topologically quantized response translates into a process in which photons of different frequencies are exchanged between the external modes, referred to as topological frequency conversion. We extend this prototypical setup to an interacting version, focusing on the minimal case of two correlated spins equally exposed to the external drives. We show that the topological invariant determining the frequency conversion can be changed by odd integers, something explicitly forbidden in the noninteracting limit of two identical spins. This correlated topological feature may, in turn, result in an enhancement of the quantized response.
Robust response signals, such as those predicted for the topological frequency converter, are of fundamental interest for potential technological applications of topological quantum matter. Based on an open quantum system implementation of the frequency converter, we propose a novel mechanism of topological quantization coined ''topological burning glass effect''. Remarkably, this mechanism amplifies the local response of the driven two-level system by an integer that is proportional to the number of environmental degrees of freedom to which the system is strongly coupled. Specifically, our findings are illustrated by the extension of the frequency converter to a central spin model. There, the local energy transfer mediated exclusively by the central spin is significantly enhanced by the collective motion of the surrounding spins. In this sense, the central spin adopts the topological nature of the total system in its non-unitary dynamics, taking into account the correlations with the environment.

This paper reports a search for triboson \({W^\pm}{W^\pm}{W^\mp}\) production in two decay channels (\({W^\pm}{W^\pm}{W^\mp}\) → \({ℓ^\pm}{νℓ^\pm}{νℓ^\mp}{ν}\) and \({W^\pm}{W^\pm}{W^\mp}\) → \({ℓ^\pm}{νℓ^\pm}{νjj}\) with \(ℓ=e,μ\)) in proton-proton collision data corresponding to an integrated luminosity of 20.3 fb\(^{−1}\) at a centre-of-mass energy of 8 TeV with the ATLAS detector at the Large Hadron Collider. Events with exactly three charged leptons, or two leptons with the same electric charge in association with two jets, are selected. The total number of events observed in data is consistent with the Standard Model (SM) predictions. The observed 95% confidence level upper limit on the SM \({W^\pm}{W^\pm}{W^\mp}\) production cross section is found to be 730 fb with an expected limit of 560 fb in the absence of SM \({W^\pm}{W^\pm}{W^\mp}\) production. Limits are also set on \(WWWW\) anomalous quartic gauge couplings.

A measurement of the calorimeter response to isolated charged hadrons in the ATLAS detector at the LHC is presented. This measurement is performed with 3.2 nb\(^{−1}\) of proton–proton collision data at \(\sqrt{s}\) = 7 TeV from 2010 and 0.1 nb\(^{−1}\) of data at \(\sqrt{s}\) = 8 TeV from 2012. A number of aspects of the calorimeter response to isolated hadrons are explored. After accounting for energy deposited by neutral particles, there is a 5% discrepancy in the modelling, using various sets of GEANT4 hadronic physics models, of the calorimeter response to isolated charged hadrons in the central calorimeter region. The description of the response to anti-protons at low momenta is found to be improved with respect to previous analyses. The electromagnetic and hadronic calorimeters are also examined separately, and the detector simulation is found to describe the response in the hadronic calorimeter well. The jet energy scale uncertainty and correlations in scale between jets of different momenta and pseudorapidity are derived based on these studies. The uncertainty is 2–5% for jets with transverse momenta above 2 TeV, where this method provides the jet energy scale uncertainty for ATLAS.