• Deutsch
  • Home
  • Search
  • Browse
  • Publish
  • Help
Schließen
  • Dewey Decimal Classification
  • 5 Naturwissenschaften und Mathematik
  • 55 Geowissenschaften, Geologie

550 Geowissenschaften

Refine

Has Fulltext

  • yes (224)

Is part of the Bibliography

  • yes (224)

Year of publication

  • 2022 (8)
  • 2021 (22)
  • 2020 (16)
  • 2019 (13)
  • 2018 (7)
  • 2017 (2)
  • 2016 (1)
  • 2015 (4)
  • 2014 (3)
  • 2013 (7)
+ more

Document Type

  • Doctoral Thesis (111)
  • Journal article (83)
  • Conference Proceeding (13)
  • Master Thesis (10)
  • Book article / Book chapter (4)
  • Report (2)
  • Book (1)

Language

  • English (139)
  • German (84)
  • French (1)

Keywords

  • Fernerkundung (19)
  • remote sensing (17)
  • Geographie (13)
  • Namibia (13)
  • Modellierung (11)
  • Klimaänderung (10)
  • MODIS (8)
  • Niger (8)
  • climate change (8)
  • Geochemie (7)
+ more

Author

  • Schüssler, Ulrich (31)
  • Sponholz, Barbara (16)
  • Kuenzer, Claudia (11)
  • Okrusch, M. (10)
  • Seidel, E. (10)
  • Okrusch, Martin (9)
  • Richter, P. (7)
  • Latifi, Hooman (6)
  • Kneisel, Christof (5)
  • Kreuzer, H. (5)
+ more

Institute

  • Institut für Geographie und Geologie (108)
  • Institut für Geographie (47)
  • Institut für Mineralogie und Kristallstrukturlehre (34)
  • Institut für Geologie (26)
  • Philosophische Fakultät (Histor., philolog., Kultur- und geograph. Wissensch.) (7)
  • Institut für Altertumswissenschaften (2)
  • Graduate School of Science and Technology (1)
  • Institut für Informatik (1)
  • Institut für Paläontologie (1)
  • Theodor-Boveri-Institut für Biowissenschaften (1)
+ more

Sonstige beteiligte Institutionen

  • Deutscher Akademischer Austauschdienst (DAAD) (1)
  • Deutsches Klimaservice Zentrum (GERICS) (1)
  • Deutsches Zentrum für Luft & Raumfahrt (DLR) (1)
  • INAF Padova, Italy (1)
  • Jacobs University Bremen, Germany (1)
  • Lehrstuhl für Fernerkundung der Uni Würzburg, in Kooperation mit dem Deutschen Fernerkundungsdatenzentrum (DFD) des Deutschen Zentrums für Luft- und Raumfahrt (DLR) (1)
  • South African National Biodiversity Institute (SANBI) (1)
  • University of Padova, Italy (1)
  • Université d'Abomey-Calavi, Benin (1)
  • VIGEA, Italy (1)
+ more

EU-Project number / Contract (GA) number

  • 308377 (1)
  • 776019 (1)

224 search hits

  • 1 to 10
  • BibTeX
  • CSV
  • RIS
  • XML
  • 10
  • 20
  • 50
  • 100

Sort by

  • Year
  • Year
  • Title
  • Title
  • Author
  • Author
More Than Infrastructure Providers – Digital Platforms' Role and Power in Retail Digitalisation in Germany (2022)
Hardaker, Sina
Digital platforms, such as Amazon, represent the major beneficiaries of the Covid‐19 crisis. This study examines the role of digital platforms and their engagement in digitalisation initiatives targeting (small) brick‐and‐mortar retailers in Germany, thereby contributing to a better understanding of how digital platforms augment, substitute or reorganise physical retail spaces. This study applies a mixed‐method approach based on qualitative interviews, participant observation as well as media analysis. First, the study illustrates the controversial role of digital platforms by positioning themselves as supporting partners of the (offline) retailers, while simultaneously shifting power towards the platforms themselves. Second, digital platforms have established themselves not only as infrastructure providers but also as actors within these infrastructures, framing digital as well as physical retail spaces, inter alia due to their role as publicly legitimised retail advisers. Third, while institutions want to help retailers to survive, they simultaneously enhance retailers' dependency on digital platforms.
Holocene aridity-induced interruptions of human activity along a fluvial channel in Egypt's northern delta (2021)
Stanley, Jean-Daniel ; Ullmann, Tobias ; Lange-Athinodorou, Eva
Geoarchaeological information presented here pertains to a subsidiary Nile channel that once flowed west of the main Sebennitic distributary and discharged its water and sediments at Egypt’s then north-central deltaic coast. Periodical paleoclimatic episodes during the later Middle and Upper Holocene included decreased rainfall and increased aridity that reduced the Nile’s flow levels and thus likely disrupted nautical transport and anthropogenic activity along this channel. Such changes in this deltaic sector, positioned adjacent to the Levantine Basin in the Eastern Mediterranean, can be attributed to climatic shifts triggered as far as the North Atlantic to the west, and African highland source areas of the Egyptian Nile to the south. Of special interest in a study core recovered along the channel are several sediment sequences without anthropogenic material that are interbedded between strata comprising numerous potsherds. The former are interpreted here as markers of increased regional aridity and reduced Nile flow which could have periodically disrupted the regional distribution of goods and nautical activities. Such times occurred ~5000 years B.P., ~4200–4000 years B.P., ~3200–2800 years B.P., ~2300–2200 years B.P., and more recently. Periods comparable to these are also identified by altered proportions of pollen, isotopic and compositional components in different radiocarbon-dated Holocene cores recovered elsewhere in the Nile delta, the Levantine region to the east and north of Egypt, and in the Faiyum depression south of the delta.
Multivariate Time Series for the Analysis of Land Surface Dynamics - Evaluating Trends and Drivers of Land Surface Variables for the Indo-Gangetic River Basins (2022)
Üreyen, Soner
The investigation of the Earth system and interplays between its components is of utmost importance to enhance the understanding of the impacts of global climate change on the Earth's land surface. In this context, Earth observation (EO) provides valuable long-term records covering an abundance of land surface variables and, thus, allowing for large-scale analyses to quantify and analyze land surface dynamics across various Earth system components. In view of this, the geographical entity of river basins was identified as particularly suitable for multivariate time series analyses of the land surface, as they naturally cover diverse spheres of the Earth. Many remote sensing missions with different characteristics are available to monitor and characterize the land surface. Yet, only a few spaceborne remote sensing missions enable the generation of spatio-temporally consistent time series with equidistant observations over large areas, such as the MODIS instrument. In order to summarize available remote sensing-based analyses of land surface dynamics in large river basins, a detailed literature review of 287 studies was performed and several research gaps were identified. In this regard, it was found that studies rarely analyzed an entire river basin, but rather focused on study areas at subbasin or regional scale. In addition, it was found that transboundary river basins remained understudied and that studies largely focused on selected riparian countries. Moreover, the analysis of environmental change was generally conducted using a single EO-based land surface variable, whereas a joint exploration of multivariate land surface variables across spheres was found to be rarely performed. To address these research gaps, a methodological framework enabling (1) the preprocessing and harmonization of multi-source time series as well as (2) the statistical analysis of a multivariate feature space was required. For development and testing of a methodological framework that is transferable in space and time, the transboundary river basins Indus, Ganges, Brahmaputra, and Meghna (IGBM) in South Asia were selected as study area, having a size equivalent to around eight times the size of Germany. These basins largely depend on water resources from monsoon rainfall and High Mountain Asia which holds the largest ice mass outside the polar regions. In total, over 1.1 billion people live in this region and in parts largely depend on these water resources which are indispensable for the world's largest connected irrigated croplands and further domestic needs as well. With highly heterogeneous geographical settings, these river basins allow for a detailed analysis of the interplays between multiple spheres, including the anthroposphere, biosphere, cryosphere, hydrosphere, lithosphere, and atmosphere. In this thesis, land surface dynamics over the last two decades (December 2002 - November 2020) were analyzed using EO time series on vegetation condition, surface water area, and snow cover area being based on MODIS imagery, the DLR Global WaterPack and JRC Global Surface Water Layer, as well as the DLR Global SnowPack, respectively. These data were evaluated in combination with further climatic, hydrological, and anthropogenic variables to estimate their influence on the three EO land surface variables. The preprocessing and harmonization of the time series was conducted using the implemented framework. The resulting harmonized feature space was used to quantify and analyze land surface dynamics by means of several statistical time series analysis techniques which were integrated into the framework. In detail, these methods involved (1) the calculation of trends using the Mann-Kendall test in association with the Theil-Sen slope estimator, (2) the estimation of changes in phenological metrics using the Timesat tool, (3) the evaluation of driving variables using the causal discovery approach Peter and Clark Momentary Conditional Independence (PCMCI), and (4) additional correlation tests to analyze the human influence on vegetation condition and surface water area. These analyses were performed at annual and seasonal temporal scale and for diverse spatial units, including grids, river basins and subbasins, land cover and land use classes, as well as elevation-dependent zones. The trend analyses of vegetation condition mostly revealed significant positive trends. Irrigated and rainfed croplands were found to contribute most to these trends. The trend magnitudes were particularly high in arid and semi-arid regions. Considering surface water area, significant positive trends were obtained at annual scale. At grid scale, regional and seasonal clusters with significant negative trends were found as well. Trends for snow cover area mostly remained stable at annual scale, but significant negative trends were observed in parts of the river basins during distinct seasons. Negative trends were also found for the elevation-dependent zones, particularly at high altitudes. Also, retreats in the seasonal duration of snow cover area were found in parts of the river basins. Furthermore, for the first time, the application of the causal discovery algorithm on a multivariate feature space at seasonal temporal scale revealed direct and indirect links between EO land surface variables and respective drivers. In general, vegetation was constrained by water availability, surface water area was largely influenced by river discharge and indirectly by precipitation, and snow cover area was largely controlled by precipitation and temperature with spatial and temporal variations. Additional analyses pointed towards positive human influences on increasing trends in vegetation greenness. The investigation of trends and interplays across spheres provided new and valuable insights into the past state and the evolution of the land surface as well as on relevant climatic and hydrological driving variables. Besides the investigated river basins in South Asia, these findings are of great value also for other river basins and geographical regions.
Mapping aquaculture ponds for the coastal zone of Asia with Sentinel-1 and Sentinel-2 time series (2021)
Ottinger, Marco ; Bachofer, Felix ; Huth, Juliane ; Kuenzer, Claudia
Asia dominates the world's aquaculture sector, generating almost 90 percent of its total annual global production. Fish, shrimp, and mollusks are mainly farmed in land-based pond aquaculture systems and serve as a primary protein source for millions of people. The total production and area occupied for pond aquaculture has expanded rapidly in coastal regions in Asia since the early 1990s. The growth of aquaculture was mainly boosted by an increasing demand for fish and seafood from a growing world population. The aquaculture sector generates income and employment, contributes to food security, and has become a billion-dollar industry with high socio-economic value, but has also led to severe environmental degradation. In this regard, geospatial information on aquaculture can support the management of this growing food sector for the sustainable development of coastal ecosystems, resources, and human health. With free and open access to the rapidly growing volume of data from the Copernicus Sentinel missions as well as machine learning algorithms and cloud computing services, we extracted coastal aquaculture at a continental scale. We present a multi-sensor approach that utilizes Earth observation time series data for the mapping of pond aquaculture within the entire Asian coastal zone, defined as the onshore area up to 200 km from the coastline. In this research, we developed an object-based framework to detect and extract aquaculture at a single-pond level based on temporal features derived from high-spatial-resolution SAR and optical satellite data acquired from the Sentinel-1 and Sentinel-2 satellites. In a second step, we performed spatial and statistical data analyses of the Earth-observation-derived aquaculture dataset to investigate spatial distribution and identify production hotspots at various administrative units at regional, national, and sub-national scale.
A training sample migration method for wetland mapping and monitoring using Sentinel data in Google Earth Engine (2021)
Fekri, Erfan ; Latifi, Hooman ; Amani, Meisam ; Zobeidinezhad, Abdolkarim
Wetlands are one of the most important ecosystems due to their critical services to both humans and the environment. Therefore, wetland mapping and monitoring are essential for their conservation. In this regard, remote sensing offers efficient solutions due to the availability of cost-efficient archived images over different spatial scales. However, a lack of sufficient consistent training samples at different times is a significant limitation of multi-temporal wetland monitoring. In this study, a new training sample migration method was developed to identify unchanged training samples to be used in wetland classification and change analyses over the International Shadegan Wetland (ISW) areas of southwestern Iran. To this end, we first produced the wetland map of a reference year (2020), for which we had training samples, by combining Sentinel-1 and Sentinel-2 images and the Random Forest (RF) classifier in Google Earth Engine (GEE). The Overall Accuracy (OA) and Kappa coefficient (KC) of this reference map were 97.93% and 0.97, respectively. Then, an automatic change detection method was developed to migrate unchanged training samples from the reference year to the target years of 2018, 2019, and 2021. Within the proposed method, three indices of the Normalized Difference Vegetation Index (NDVI), Normalized Difference Water Index (NDWI), and the mean Standard Deviation (SD) of the spectral bands, along with two similarity measures of the Euclidean Distance (ED) and Spectral Angle Distance (SAD), were computed for each pair of reference–target years. The optimum threshold for unchanged samples was also derived using a histogram thresholding approach, which led to selecting the samples that were most likely unchanged based on the highest OA and KC for classifying the test dataset. The proposed migration sample method resulted in high OAs of 95.89%, 96.83%, and 97.06% and KCs of 0.95, 0.96, and 0.96 for the target years of 2018, 2019, and 2021, respectively. Finally, the migrated samples were used to generate the wetland map for the target years. Overall, our proposed method showed high potential for wetland mapping and monitoring when no training samples existed for a target year.
Determining temporal uncertainty of a global inland surface water time series (2021)
Mayr, Stefan ; Klein, Igor ; Rutzinger, Martin ; Kuenzer, Claudia
Earth observation time series are well suited to monitor global surface dynamics. However, data products that are aimed at assessing large-area dynamics with a high temporal resolution often face various error sources (e.g., retrieval errors, sampling errors) in their acquisition chain. Addressing uncertainties in a spatiotemporal consistent manner is challenging, as extensive high-quality validation data is typically scarce. Here we propose a new method that utilizes time series inherent information to assess the temporal interpolation uncertainty of time series datasets. For this, we utilized data from the DLR-DFD Global WaterPack (GWP), which provides daily information on global inland surface water. As the time series is primarily based on optical MODIS (Moderate Resolution Imaging Spectroradiometer) images, the requirement of data gap interpolation due to clouds constitutes the main uncertainty source of the product. With a focus on different temporal and spatial characteristics of surface water dynamics, seven auxiliary layers were derived. Each layer provides probability and reliability estimates regarding water observations at pixel-level. This enables the quantification of uncertainty corresponding to the full spatiotemporal range of the product. Furthermore, the ability of temporal layers to approximate unknown pixel states was evaluated for stratified artificial gaps, which were introduced into the original time series of four climatologic diverse test regions. Results show that uncertainty is quantified accurately (>90%), consequently enhancing the product's quality with respect to its use for modeling and the geoscientific community.
Systematic water fraction estimation for a global and daily surface water time-series (2021)
Mayr, Stefan ; Klein, Igor ; Rutzinger, Martin ; Kuenzer, Claudia
Fresh water is a vital natural resource. Earth observation time-series are well suited to monitor corresponding surface dynamics. The DLR-DFD Global WaterPack (GWP) provides daily information on globally distributed inland surface water based on MODIS (Moderate Resolution Imaging Spectroradiometer) images at 250 m spatial resolution. Operating on this spatiotemporal level comes with the drawback of moderate spatial resolution; only coarse pixel-based surface water quantification is possible. To enhance the quantitative capabilities of this dataset, we systematically access subpixel information on fractional water coverage. For this, a linear mixture model is employed, using classification probability and pure pixel reference information. Classification probability is derived from relative datapoint (pixel) locations in feature space. Pure water and non-water reference pixels are located by combining spatial and temporal information inherent to the time-series. Subsequently, the model is evaluated for different input sets to determine the optimal configuration for global processing and pixel coverage types. The performance of resulting water fraction estimates is evaluated on the pixel level in 32 regions of interest across the globe, by comparison to higher resolution reference data (Sentinel-2, Landsat 8). Results show that water fraction information is able to improve the product's performance regarding mixed water/non-water pixels by an average of 11.6% (RMSE). With a Nash-Sutcliffe efficiency of 0.61, the model shows good overall performance. The approach enables the systematic provision of water fraction estimates on a global and daily scale, using only the reflectance and temporal information contained in the input time-series.
Remote sensing of snow cover variability and its influence on the runoff of Sápmi's rivers (2021)
Rößler, Sebastian ; Witt, Marius S. ; Ikonen, Jaakko ; Brown, Ian A. ; Dietz, Andreas J.
The boreal winter 2019/2020 was very irregular in Europe. While there was very little snow in Central Europe, the opposite was the case in northern Fenno-Scandia, particularly in the Arctic. The snow cover was more persistent here and its rapid melting led to flooding in many places. Since the last severe spring floods occurred in the region in 2018, this raises the question of whether more frequent occurrences can be expected in the future. To assess the variability of snowmelt related flooding we used snow cover maps (derived from the DLR's Global SnowPack MODIS snow product) and freely available data on runoff, precipitation, and air temperature in eight unregulated river catchment areas. A trend analysis (Mann-Kendall test) was carried out to assess the development of the parameters, and the interdependencies of the parameters were examined with a correlation analysis. Finally, a simple snowmelt runoff model was tested for its applicability to this region. We noticed an extraordinary variability in the duration of snow cover. If this extends well into spring, rapid air temperature increases leads to enhanced thawing. According to the last flood years 2005, 2010, 2018, and 2020, we were able to differentiate between four synoptic flood types based on their special hydrometeorological and snow situation and simulate them with the snowmelt runoff model (SRM).
Permafrost and glaciers: perspectives for the Earth and planetary sciences — another step forward (2021)
Dobiński, Wojciech ; Kneisel, Christof
No abstract available
Remote Sensing and modelling based framework for valuing irrigation system efficiency and steering indicators of consumptive water use in an irrigated region (2020)
Usman, Muhammad ; Mahmood, Talha ; Conrad, Christopher ; Bodla, Habib Ullah
Water crises are becoming severe in recent times, further fueled by population increase and climate change. They result in complex and unsustainable water management. Spatial estimation of consumptive water use is vital for performance assessment of the irrigation system using Remote Sensing (RS). For this study, its estimation is done using the Soil Energy Balance Algorithm for Land (SEBAL) approach. Performance indicators including equity, adequacy, and reliability were worked out at various spatiotemporal scales. Moreover, optimization and sustainable use of water resources are not possible without knowing the factors mainly influencing consumptive water use of major crops. For that purpose, random forest regression modelling was employed using various sets of factors for site-specific, proximity, and cropping system. The results show that the system is underperforming both for Kharif (i.e., summer) and Rabi (i.e., winter) seasons. Performance indicators highlight poor water distribution in the system, a shortage of water supply, and unreliability. The results are relatively good for Rabi as compared to Kharif, with an overall poor situation for both seasons. Factors importance varies for different crops. Overall, distance from canal, road density, canal density, and farm approachability are the most important factors for explaining consumptive water use. Auditing of consumptive water use shows the potential for resource optimization through on-farm water management by the targeted approach. The results are based on the present situation without considering future changes in canal water supply and consumptive water use under climate change.
  • 1 to 10

DINI-Zertifikat     OPUS4 Logo

  • Contact
  • |
  • Imprint
  • |
  • Sitemap