90.00.00 GEOPHYSICS, ASTRONOMY, AND ASTROPHYSICS (for more detailed headings, see the Geophysics Appendix)
Refine
Has Fulltext
- yes (9)
Is part of the Bibliography
- yes (9)
Document Type
- Doctoral Thesis (8)
- Preprint (1)
Keywords
- Blazar (2)
- Active Galaxies (1)
- Aktive Galaxie (1)
- Auftauschicht (1)
- Blazars (1)
- Bodenparameter (1)
- Datenanalyse (1)
- Dauerfrostboden (1)
- Engadin (1)
- Euler equations (1)
Institute
Sonstige beteiligte Institutionen
In a modified inflation scenario we replace the “big bang” by a condensation event in an eternal all-compassing big ocean of free qubits in our modified cosmology. Interactions of qubits in the qubit ocean are rare. If they happen, they provide a nucleus for a new universe as the qubits become decoherent and freeze-out into defined bit ensembles. Second, we replace inflation by a crystallization event triggered by the nucleus of interacting qubits to which rapidly more and more qubits attach (like in everyday crystal growth) – the crystal unit cell guarantees same symmetries everywhere. Hence, the textbook inflation scenario to explain the same laws of nature in our domain is replaced by the crystal unit cell of the crystal formed. We give here only the perspective or outline of this modified inflation theory, as the detailed mathematical physics behind this has still to be formulated and described.
Interacting qubits solidify, quantum entropy decreases (but increases in the ocean around). The interacting qubits form a rapidly growing domain where the n**m states become separated ensemble states, rising long-range forces stop ultimately further growth. After that very early events, standard cosmology with the hot fireball model takes over. Our theory agrees well with lack of inflation traces in cosmic background measurements, but more importantly can explain well by such a type of cosmological crystallization instead of inflation the early creation of large-scale structure of voids and filaments, supercluster formation, galaxy formation, and the dominance of matter: no annihilation of antimatter necessary, rather the unit cell of our crystal universe has a matter handedness avoiding anti-matter.
We prove a triggering of qubit interactions can only be 1,2,4 or 8-dimensional (agrees with E8 symmetry of our universe). Repulsive forces at ultrashort distances result from quantization, long-range forces limit crystal growth. Crystals come and go in the qubit ocean. This selects for the ability to lay seeds for new crystals, for self-organization and life-friendliness.
The phase space of the crystal agrees with the standard model of the basic four forces for n quanta. It includes all possible ensemble combinations of their quantum states m, a total of n**m states. Neighbor states reach according to transition possibilities (S-matrix) with emergent time from entropic ensemble gradients. However, this means that in our four dimensions there is only one bit overlap to neighbor states left (almost solid, only below h dash liquidity left). However, the E8 symmetry of heterotic string theory has six rolled-up, small dimensions which help to keep the qubit crystal together and will never expand.
Finally, we give first energy estimates for free qubits vs bound qubits, misplacements in the qubit crystal and entropy increase during qubit decoherence / crystal formation. Scalar fields for color interaction and gravity derive from the permeating qubit-interaction field in the crystal. Hence, vacuum energy gets low inside the qubit crystal. Condensed mathematics may advantageously help to model free (many states denote the same qubit) and bound qubits in phase space.
Context. In active galaxies, matter is accreted onto super massive black holes (SMBH). This accretion process causes a region roughly the size of our solar system to outshine the entire host galaxy, forming an active galactic nucleus (AGN). In some of these active galaxies, highly relativistic particle jets are formed parallel to the rotation axis of the super massive black hole. A fraction of these sources is observed under a small inclination angle between the pointing direction of the jet and the observing line of sight. These sources are called blazars. Due to the small inclination angle and the highly relativistic speeds of the particles in the jet, beaming effects occur in the radiation of these particles. Blazars can be subdivided into the high luminosity flat spectrum radio quasars (FSRQs) and the low luminosity BL Lacertae objects (BL Lacs). As all AGN, blazars are broadband emitters and therefore observable from the longest wavelengths in the radio regime to the shortest wavelengths in the gamma-ray regime. In this thesis I will analyze blazars at these two extremes with respect to their parsec-scale properties in the radio and their time evolution properties in gamma-ray flux.
Method. In the radio regime the technique of very long baseline interferometry (VLBI) can be used in order to spatially resolve the synchrotron radiation coming from those objects down to sub-parsec scales. This information can be used to observe the time evolution of the structure of such sources. This is done in large monitoring programs such as the MOJAVE (15 GHz) and the Boston University blazar monitoring program (43 GHz). In this thesis I utilize data of 28 sources from these monitoring programs spanning 10 years of observation from 2003 to 2013, resulting in over 1800 observed epochs, to study the brightness temperature and diameter gradients of these jets. I conduct a search for systematic geometry transitions in the radio jets. The synchrotron cooling time in the radio core of the jets is used to determine the magnetic field strength in the radio core. Considering the jet geometry, these magnetic field strengths are scaled to the ergosphere of the SMBH in order to obtain the distance of the radio core to the SMBH.
In the gamma-regime these blazars cannot be spatially resolved. Due to this, it is hard to put strong constrains onto where the gamma-ray emitting region is. Blazars have shown to be variable at high energies on time scales down to minutes. The nature of this variability can be studied in order to put constrains on the particle acceleration mechanism and possibly the region and size of the gamma-ray emitting region. The variability of blazars in the energy range between 0.1 GeV and 1 GeV can for example be observed with the pair-conversion telescope on board the Fermi satellite. I use 10 years of data from the Fermi-LAT (LAT: Large Area Telescope) satellite in order to study the variability of a large sample of blazars (300-800, depending on the used significance filters for data points). I quantify this variability with the Ornstein-Uhlenbeck (OU) parameters and the power spectral density (PSD) slopes. The same procedure is applied to 20 light curves available for the radio sample.
Results. The diameter evolution along the jet axis of the radio sources suggests, that FSRQs feature flatter gradients than BL Lacs. Fitting these gradients, it is revealed that BL Lacs are systematically better described by a simple single power law than FSRQs. I found 9 sources with a strongly constrained geometry transition. The sources are 0219+421, 0336-019, 0415+379, 0528+134, 0836+710, 1101+384, 1156+295, 1253-055 and 2200+420. In all of these sources, the geometry transition regions are further out in the jet than the Bondi sphere. The magnetic field strengths of BL Lacs is systematically larger than that of FSRQs. However the scaling of these fields suggest that the radio cores of BL Lac objects are closer to the SMBHs than the radio cores of FSRQs. Analyzing the variability of Fermi-LAT light curves yields consistent results for all samples. FSRQs show systematically steeper PSD slopes and feature OU parameters more favorable to strong variability than BL Lacs. The Fermi-LAT light curves of the sub-sample of radio jets, suggest an anticorrelation between the jet complexity from the radio observations and the OU-parameters as well as the PSD slopes from the gamma-ray observations.
Conclusion.
The flatter diameter gradients of FSRQs suggest that these sources are more collimated further down the jet than BL Lacs. The systematically better description of the diameter and brightness temperature gradient by a single power law of BL Lacs, suggest that FSRQs are more complex with respect to the diameter evolution along the jet and the surface brightness distribution than BL Lac objects. FSRQs often feature regions where recollimation can occur in distinct knots within the jets. For the sources where a geometry transition could be constrained, the Bondi radius, being systematically smaller than the position of the transition region along the jet axis, suggest that changing pressure gradients are not the sole cause for these systematic geometry transitions. Nevertheless they may be responsible for recollimation regions, found typically downstream the jet, beyond the Bondi radius and the transition zone. The difference in the distance of the radio cores between FSRQs and BL Lacs is most likely due to the combination of differences in SMBH masses and systematically smaller jet powers in BL Lacs. The variability in energy ranges above 100 MeV and above 1 GeV-regime suggest that many light curves of BL Lac objects are more likely to be white noise while the PSD slopes and the OU parameters of FSRQ gamma-ray light curves favor stronger variability on larger time scales with respect to the time binning of the analyzed light curve. Although the anticorrelation of the jet complexity acquired from the radio observations and the PSD slopes and OU parameters from the gamma-observations suggest that more complex sources favor OU parameters and PSD slopes resulting in more variability (not white noise) it is beyond the scope of this thesis to pinpoint whether this correlation results from causation. The question whether a complex jet causes more gamma-ray variability or more gamma-ray variability causes more complex jets cannot be answered at this point. Nevertheless the computed correlation measures suggest that this dependence is most likely not linear and therefore an indication that these effects might even interact.
Das Ziel dieser Arbeit war neue Eingangsdaten für die Landoberflächenbeschreibung des regionalen Klimamodells REMO zu finden und ins Modell zu integrieren, um die Vorhersagequalität des Modells zu verbessern. Die neuen Daten wurden so in das Modell eingebaut, dass die bisherigen Daten weiterhin als Option verfügbar sind. Dadurch kann überprüft werden, ob und in welchem Umfang sich die von jedem Klimamodell benötigten Rahmendaten auf Modellergebnisse auswirken. Im Zuge der Arbeit wurden viele unterschiedliche Daten und Methoden zur Generierung neuer Parameter miteinander verglichen, denn neben dem Ersetzen der konstanten Eingangswerte für verschiedene Oberflächenparameter und den damit verbundenen Änderungen wurden als zusätzliche Verbesserung auch Veränderungen an der Parametrisierung des Bodens speziell in Hinblick auf die Bodentemperaturen in REMO vorgenommen. Im Rahmen dieser Arbeit wurden die durch die verschiedenen Änderungen ausgelösten Auswirkungen für das CORDEX-Gebiet EUR-44 mit einer Auflösung von ca. 50km und für das in dem darin eingebetteten neu definierten Deutschlandgebiet GER-11 mit einer Auflösung von ca. 12km getestet sowie alle Änderungen anhand von verschiedenen Beobachtungsdatensätzen validiert.
Die vorgenommenen Arbeiten gliederten sich in drei Hauptteile. Der erste Teil bestand in dem vom eigentlichen Klimamodell unabhängigen Vergleich der verschiedenen Eingangsdaten auf unterschiedlichen Auflösungen und deren Performanz in allen Teilen der Erde, wobei ein besonderer Fokus auf der Qualität in den späteren Modellgebieten lag. Unter Berücksichtigung der Faktoren, wie einer globalen Verfügbarkeit der Daten, einer verbesserten räumlichen Auflösung und einer kostenlosen Nutzung der Daten sowie verschiedener Validationsergebnissen von anderen Studien, wurden in dieser Arbeit vier neue Topographiedatensätze (SRTM, ALOS, TANDEM und ASTER) und drei neue Bodendatensätze (FAOn, Soilgrid und HWSD) für die Verwendung im Präprozess von REMO aufbereitet und miteinander sowie mit den bisher in REMO verwendeten Daten verglichen. Auf Grundlage dieser Vergleichsstudien schieden bei den Topographiedaten die verwendeten Datensatz-Versionen von SRTM, ALOS und TANDEM für die in dieser Arbeit durchgeführten REMO-Läufe aus. Bei den neuen Bodendatensätzen wurde ausgenutzt, dass diese verschiedenen Bodeneigenschaften für unterschiedliche Tiefen als Karten zur Verfügung stellen. In REMO wurden bisher alle benötigten Bodenparameter abhängig von fünf verschiedenen Bodentexturklassen und einer zusätzlichen Torfklasse ausgewiesen und als konstant über die gesamte Modellbodensäule (bis ca. 10m) angenommen. Im zweiten Teil wurden auf Basis der im ersten Teil ausgewählten neuen Datensätze und den neu verfügbaren Bodenvariablen verschiedene Sensitivitätsstudien über das Beispieljahr 2000 durchgeführt. Dabei wurden verschiedene neue Parametrisierungen für die bisher aus der Textur abgeleiteten Bodenvariablen und die Parametrisierung von weiteren hydrologischen und thermalen Bodeneigenschaften verglichen. Ferner wurde aufgrund der neuen nicht über die Tiefe konstanten Bodeneigenschaften eine neue numerische Methode zur Berechnung der Bodentemperaturen der fünf Schichten in REMO getestet, welche wiederum andere Anpassungen erforderte. Der Test und die Auswahl der verschiedenen Datensatz- und Parametrisierungsversionen auf die Modellperformanz wurde in drei Experimentpläne unterteilt. Im ersten Plan wurden die Auswirkungen der ausgewählten Topographie- und Bodendatensätze überprüft. Der zweite Plan behandelte die Unterschiede der verschiedenen Parametrisierungsarten der Bodenvariablen hinsichtlich der verwendeten Variablen zur Berechnung der Bodeneigenschaften, der über die Tiefe variablen oder konstanten Eigenschaften und der verwendeten Berechnungsmethode der Bodentemperaturänderungen. Durch die Erkenntnisse aus diesen beiden Experimentplänen, die für beide Untersuchungsgebiete durchgeführt wurden, ergaben sich im dritten Plan weitere Parametrisierungsänderungen. Alle Änderungen dieses dritten Experimentplans wurden sukzessiv getestet, sodass der paarweise Vergleich von zwei aufeinanderfolgenden Modellläufen die Auswirkungen der Neuerung im jeweils zweiten Lauf widerspiegelt. Der letzte Teil der Arbeit bestand aus der Analyse von fünf längeren Modellläufen (2000-2018), die zur Überprüfung der Ergebnisse aus den Sensitivitätsstudien sowie zur Einschätzung der Performanz in weiteren teilweise extremen atmosphärischen Bedingungen durchgeführt wurden. Hierfür wurden die bisherige Modellversion von REMO (id01) für die beiden Untersuchungsgebiete EUR-44 und GER-11 als Referenzläufe, zwei aufgrund der Vergleichsergebnisse von Experimentplan 3 selektierte Modellversionen (id06 und id15a für GER-11) sowie die finale Version (id18a für GER-11), die alle vorgenommenen Änderungen dieser Arbeit enthält, ausgewählt.
Es stellte sich heraus, dass sowohl die neuen Topographiedaten als auch die neuen Bodendaten große Differenzen zu den bisherigen Daten in REMO haben. Zudem änderten sich die von diesen konstanten Eingangsdaten abgeleiteten Hilfsvariablen je nach verwendeter Parametrisierung sehr deutlich. Dies war besonders gut anhand der Bodenparameter zu erkennen. Sowohl die räumliche Verteilung als auch der Wertebereich der verschiedenen Modellversionen unterschieden sich stark. Eine Einschätzung der Qualität der resultierenden Parameter wurde jedoch dadurch erschwert, dass auch die verschiedenen zur Validierung herangezogenen Bodendatensätze für diese Parameter deutlich voneinander abweichen. Die finale Modellversion id18a ähnelte trotz der umfassenden Änderungen in den meisten Variablen den Ergebnissen der bisherigen REMO-Version. Je nach zeitlicher und räumlicher Aggregation sowie unterschiedlichen Regionen und Jahreszeiten wurden leichte Verbesserungen, aber auch leichte Verschlechterungen im Vergleich zu den klimatologischen Validationsdaten festgestellt. Größere Veränderungen im Vergleich zur bisherigen Modellversion konnten in den tieferen Bodenschichten aufgezeigt werden, welche allerdings aufgrund von fehlenden Validationsdaten nicht beurteilt werden konnten. Für alle 2m-Temperaturen konnte eine tendenzielle leichte Erwärmung im Vergleich zum bisherigen Modelllauf beobachtet werden, was sich einerseits negativ auf die ohnehin durchschnittlich zu hohe Minimumtemperatur, aber andererseits positiv auf die bisher zu niedrige Maximumtemperatur des Modells in den betrachteten Gebieten auswirkte. Im Niederschlagssignal und in den 10m-Windvariablen konnten keine signifikanten Änderungen nachgewiesen werden, obwohl die neue Topographie an manchen Stellen im Modellgebiet deutlich von der bisherigen abweicht. Des Weiteren variierte das Ranking der verschiedenen Modellversionen jeweils nach dem angewendeten Qualitätsindex.
Um diese Ergebnisse besser einordnen zu können, muss berücksichtigt werden, dass die neuen Daten für Modellgebiete mit 50 bzw. 12km räumlicher Auflösung und der damit verbundenen hydrostatischen Modellversion getestet wurden. Zudem sind vor allem in Fall der Topographie die bisher enthaltenen GTOPO-Daten (1km Auflösung) für die Aggregation auf diese gröbere Modellauflösung geeignet. Die bisherigen Bodendaten stoßen jedoch mit 50km Auflösung bereits an ihre Grenzen. Zusätzlich ist zu beachten, dass nicht nur die Mittelwerte dieser Daten, sondern auch deren Subgrid-Variabilität als Variablen im Modell für verschiedene Parametrisierungen verwendet werden. Daher ist es essentiell, dass die Eingangsdaten eine deutlich höhere Auflösung bereitstellen als die zur Modellierung definierte Auflösung. Für lokale Klimasimulationen mit Auflösungen im niedrigen Kilometerbereich spielen auch die Vertikalbewegungen (nicht-hydrostatische Modellversion) eine wichtige Rolle, die stark von der Topographie sowie deren horizontaler und vertikaler Änderungsrate beeinflusst werden, was die in dieser Arbeit eingebauten wesentlich höher aufgelösten Daten für die zukünftige Weiterentwicklung von REMO wertvoll machen kann.
Fluids in Gravitational Fields – Well-Balanced Modifications for Astrophysical Finite-Volume Codes
(2021)
Stellar structure can -- in good approximation -- be described as a hydrostatic state, which which arises due to a balance between gravitational force and pressure gradient. Hydrostatic states are static solutions of the full compressible Euler system with gravitational source term, which can be used to model the stellar interior. In order to carry out simulations of dynamical processes occurring in stars, it is vital for the numerical method to accurately maintain the hydrostatic state over a long time period. In this thesis we present different methods to modify astrophysical finite volume codes in order to make them \emph{well-balanced}, preventing them from introducing significant discretization errors close to hydrostatic states. Our well-balanced modifications are constructed so that they can meet the requirements for methods applied in the astrophysical context: They can well-balance arbitrary hydrostatic states with any equation of state that is applied to model thermodynamical relations and they are simple to implement in existing astrophysical finite volume codes. One of our well-balanced modifications follows given solutions exactly and can be applied on any grid geometry. The other methods we introduce, which do no require any a priori knowledge, balance local high order approximations of arbitrary hydrostatic states on a Cartesian grid. All of our modifications allow for high order accuracy of the method. The improved accuracy close to hydrostatic states is verified in various numerical experiments.
Active galactic nuclei (AGNs) are among the brightest sources in our universe. These galaxies are considered active because their central region is brighter than the luminosities of all stars in a galxies can provide. In their center is a supermassive black hole (SMBH) surrounded by an accretion disk and further out a dusty torus. AGN can be found with emission over the whole electromagnetic spectrum, starting at radio frequencies over optical and X-ray emission up to the $\gamma$-rays. Not all of these sources are detected in each frequency regime. In this work mainly blazars are examined at low radio frequencies. Blazars are a subclass of radio-loud AGN. These radio-loud sources usually exhibit highly collimated jets perpendicular to the accretion disk. For blazars these jets are pointed in the direction of the observer and their emission is highly variable. \\
AGN are classified in different subclasses based on their morphology. These different subclasses are combined in the AGN unification model, which explains the different morphologies by having sources only varying in their luminosities and their angle to the line of sight to the observer. Blazars are these targets, where the jet is pointing towards the observer, while the AGN observed edge on are called radio galaxies. This means that blazars should be the counterparts to radio galaxies seen from a different angle. Testing this is one of the goals in this work. \\
After the discovery of AGN in the 1940s these objects have been studied at all wavelengths. With the development of interferometry with radio telescopes the angular resolution for radio observations could be improved. In the last 20 years many AGN are regularly monitored. One of these monitoring programs is the MOJAVE program, monitoring 274 AGNs with using the Very Long Baseline Interferometry (VLBI) technique. The monitoring provides information on the evolution and structure of AGN and their jets. However, the mechanisms of the jet formation and their collimation are not fully understood. Due to relativistic effects it is difficult to obtain intrinsic instead of apparent parameters of these jets. One approach to get closer to the intrinsic jet power is by observing the regions, in which the jets end and interact with the intergalactic medium. Observations at lower radio frequencies are more sensitive for extended diffuse emission. \\
Since December 2012 a new radio telescope for low frequencies is observing. It is a telescope with stations consisting of dipole antennas. The major part of the array located in the Netherlands (38 stations) with 12 additional international stations in Germany, France, Sweden, Poland and the United Kingdom. This instrument is called the Low Frequency Array (LOFAR). LOFAR offers the possibility to observe at frequencies between 30--250 MHz in combination with angular resolution (below 1 arcsec for the full array), which was not available with previous telescopes. \\
In this work results of blazar studies with LOFAR observations are presented. To take advantage of a large database with multi-wavelength observations and kinematic studies the MOJAVE 1.5 Jy flux limited sample was chosen. Based on the preliminary results of the LOFAR Multifrequency Snapshot Sky Survey (MSSS) the flux densities and spectral indices of blazars of the MOJAVE sample are examined. 125 counterparts of MOJAVE blazars were found in the MSSS catalog. Since the MSSS observations only contain the stations in the Netherlands and observes in snapshots, the angular resolution and the sensitivity is limited. The first MSSS catalog was produced with an angular resolution of $\sim$120 arcsec and a sensitivity of $\sim$50--100 mJy. Another advantage of the MOJAVE sample is the monitoring of these sources with the Owens Valley Radio Observatory (OVRO) at 15 GHz to produce radio lightcurves. With these observations it is possible to get quasi-simultaneous flux densities at 15 GHz for the corresponding MSSS observations. By having quasi-simultaneous observations the variability of the blazars affects the flux densities less than with the use of archival data. The spectral indices obtained by the combination of MSSS and OVRO flux densities can be used to estimate the contribution of the diffuse extended emission for these AGNs. \\
Comparing the MSSS catalog with the OVRO data points, the flux densities have a tendency to be higher at low frequencies. This is expected due to the higher contribution of extended emission. The broadband spectral index distribution shows a peak at $\sim-0.2$. While some sources seem to have steeper spectral indices meaning that extended emission contributes a large fraction of the total flux density, more than the half of the sample shows flat spectral indices. The flat spectral indices show that the total flux densities of these sources are dominated by their relativistic beamed emission regions, which is the same for the observations at GHz frequencies. \\
To obtain more detailed images of these sources the MSSS measurement sets including sources of the sample were reprocessed to improve the angular resolution to $\sim$30 arcsec. The higher angular resolution reveals extended diffuse emission of several blazars. Since the reimaging results were not fully calibrated only the morphology at this resolution could be examined. However, with the short snapshot observations the images obtained with this strategy are affected from artifacts. The reimaging could be successfully performed for 93 sources in one frequency band. For 45 of these sources all availabe frequency bands could be reprocessed and used to created averaged images. These images are presented in this work. As a results of the reimaging process a pilot sample was defined to observe targets with diffuse extended emission using the whole LOFAR array including the international stations. \\
The second part of this work presents the results of a pilot sample consisting of four blazars observed with the LOFAR international array. Since the calibration of this kind of LOFAR observation is still in development, the main focus was the description of the used calibration strategy. The calibration strategies still has some limitation but resulted in images with angular resolutions of less than 1 arcsec. The morphology of all four blazars show features confirming the expectations of their counterpart radio galaxies. With the flux densities of the extended emission found in these brightness distributions the extended radio luminosities are calculated. Comparing these to the radio galaxy classifications also confirm the expectations from the unification model. \\
By extending the sample of observed blazars with LOFAR international in future the calibration strategy can be used to create similar high resolution images. A larger sample can be used to test the unification model with statistical significant results. \\
Classical novae are thermonuclear explosions occurring on the surface of white dwarfs.
When co-existing in a binary system with a main sequence or more evolved star, mass
accretion from the companion star to the white dwarf can take place if the companion
overflows its Roche lobe. The envelope of hydrogen-rich matter which builds on
top of the white dwarf eventually ignites under degenerate conditions, leading to
a thermonuclear runaway and an explosion in the order of 1046 erg, while leaving
the white dwarf intact. Spectral analyses from the debris indicate an abundance of
isotopes that are tracers of nuclear burning via the hot CNO cycle, which in turn
reveal some sort of mixing between the envelope and the white dwarf underneath.
The exact mechanism is still a matter of debate.
The convection and deflagration in novae develop in the low Mach number regime.
We used the Seven League Hydro code (SLH ), which employs numerical schemes
designed to correctly simulate low Mach number flows, to perform two and three-
dimensional simulations of classical novae. Based on a spherically-symmetric model
created with aid of a stellar evolution code, we developed our own nova model and
tested it on a variety of numerical grids and boundary conditions for validation. We
focused on the evolution of temperature, density and nuclear energy generation rate at
the layers between white dwarf and envelope, where most of the energy is generated,
to understand the structure of the transition region, and its effect on the nuclear
burning. We analyzed the resulting dredge-up efficiency stemming from the convective
motions in the envelope. Our models yield similar results to the literature, but seem
to depend very strongly on the numerical resolution. We followed the evolution of
the nuclear species involved in the CNO cycle and concluded that the thermonuclear
reactions primarily taking place are those of the cold and not the hot CNO cycle.
The reason behind this could be that under the conditions generally assumed for
multi-dimensional simulations, the envelope is in fact not degenerate. We performed
initial tests for 3D simulations and realized that alternative boundary conditions are
needed.
Die vorliegende Arbeit beschäftigt sich mit den Prozessen, die in einer Unterklasse der Aktiven Galaxienkerne, den Blazaren, das Emissionsspektrum dieser Objekte erzeugen. Dies beinhaltet insbesondere den Beschleunigungsprozess, der eine nichtthermische Teilchenverteilung erzeugt, sowie diverse Strahlungsprozesse. Das Spektrum dieser Quellen reicht dabei vom Radiobereich bis zu Energien im TeV-Bereich. Die Form des zeitlich gemittelten Spektrums kann durch Modelle bereits sehr gut beschrieben werden. Insbesondere die erste der beiden dominierenden Komponenten des Spektrums kann mit hoher Sicherheit mit Synchrotronemission einer Elektronenenergieverteilung in Form eines Potenzgesetzes identifiziert werden. Für den Ursprung der zweiten Komponente existieren jedoch verschiedene Erklärungsversuche. Dies sind im wesentlichen die inverse Compton-Streuung der internen oder externer Strahlung (leptonische Modelle) sowie die Emission und photohadronische Wechselwirkung einer hochenergetischen Verteilung von Protonen in der Quelle.
Eine räumliche Auflösung des Ursprungs der detektierten Strahlung ist mit den zur Verfügung stehenden Teleskopen nicht möglich. Einschränkungen für die Ausdehnung dieser Emissionszone ergeben sich lediglich aus der Variation des Emissionsspektrums. Eine Bestimmung der Morphologie ist jedoch im selbstabsorbierten Radiobereich des Spektrums durch die Ausnutzung von interferometrischen Beobachtungen möglich. Die resultierenden Längen, auf denen die im inneren der Quelle selbstabsorbierte Strahlung die Quelle schließlich verlässt, sind jedoch etwa zwei Größenordnungen oberhalb der aus den Variabilitätszeitskalen gefolgerten Limits.
Das im Rahmen dieser Arbeit entwickelte Modell soll dabei helfen, verschiedene Beobachtungen mit Hilfe eines quantitativen Modells zu beschreiben. Hier steht insbesondere die Korrelation zwischen den Verläufen der Hochenergie- und Radioemission im Vordergrund. Eine Aussage über die Existenz einer solchen Verbindung konnte aus den bisherigen Beobachtungen nicht getroffen werden.
Eine quantitative Modellierung könnte bei der Interpretation der bisher uneindeutigen Datenlage helfen. Eine weitere, durch Modelle bisher nicht beschreibbare, Beobachtungsevidenz sind extrem kurzzeitige Variationen des Flusszustands.
Die Lichtlaufzeit durch das für die Modellierung benötigte Raumgebiet ist zumeist größer als die beobachtete Zeitskala.
Zudem deuten die Beobachtungen darauf hin, dass manche dieser Flussausbrüche nicht zwischen den verschiedenen Bändern korreliert sind, wie es zumindest die leptonischen Modelle erwarten lassen würden.
Das hier beschriebene Modell verbindet eine räumliche Auflösung des Emissionsgebiets mit dem dominanten Beschleunigungsmechanismus. Hierdurch konnte zunächst gezeigt werden, dass die Beschreibung von Variabilität auch auf Skalen unterhalb der Lichtlaufzeit durch das modellierte Raumgebiet möglich ist. Zudem wurde ein Szenario quantifiziert, dass im leptonischen Fall unkorrelierte Ausbrüche vorhersagt.
\thispagestyle{empty}
Durch eine Erweiterung des Emissionsgebiets gegenüber anderen Blazar-Modellen um zwei Größenordnung konnte zudem eine Verknüpfung zwischen dem Hochenergie- und dem Radiobereich erfolgen. Die gefundene Morphologie des Einschlussgebiets der nichtthermischen Teilchenpopulation beinhaltet eine physikalisch sinnvolle Randbedingung für das Emissionsgebiet der Hochenergiestrahlung, die zudem den für die betrachtete Quelle korrekten Spektralindex im Radiobereich erzeugt.
Darüber hinaus wurden in das Modell sowohl leptonische als auch hadronische Prozesse integriert, die eine flexible und unvoreingenommene Modellierung potentieller Hybridquellen erlauben.
Mit dem entwickelten Modell ist es möglich, aus detailliert vermessenen Lichtkurven im Hochenergiebereich die zu erwartende Radioemission vorherzusagen. Die in diese Vorhersage eingehenden Parameter lassen sich aus der Modellierung des Gleichgewichtsspektrums bestimmen.
In this work, high-energy observables arising during different phases of SN explosions are studied with respect to their potential for allowing conclusions on suggested explosion scenarios and physical mechanisms that are thought to influence the evolution of SNe in a major way. The focus on selected observables at keV and MeV energies is motivated by the appearance of large degeneracies that can even be found for disparate scenarios in many wavelength regimes. Since the discussed emission in the high-energy regime is directly linked to nuclear processes being usually very distinct for different suggested physical models, the signatures at keV and MeV energies allow for meaningful comparisons of simulations with observations.
The discontinuous mountain permafrost zone is characterized by its heterogeneous distribution of frozen ground and a small-scale variability of the ground thermal regime. Large parts of these areas are covered by glacial till and sediments that were exposed after the recession of the glaciers since the 19th century. As response to changed climatic conditions permafrost-affected areas will lose their ability as sediment storage and on the contrary, they will act as source areas for unconsolidated debris. Along with modified precipitation patterns the degradation of the discontinuous mountain permafrost zone will (temporarily)
increase its predisposition for mass movement processes and thus has to be monitored in a differentiated way.
Therefore, the spatio-temporal dynamics of frozen ground are assessed in this study based on results obtained in three glacier forefields in the Engadin (Swiss Alps) and at the Zugspitze (German Alps). Sophisticated techniques are required to uncover structural differences in the subsurface. Thus, the applicability of advanced geophysical methods is tested for alpine environments and proved by the good 3D-delineation of a permafrost body and by the detection of detailed processes in the active layer during snow melt. Electrical resistivity tomography (ERT) approaches (quasi-3D, daily monitoring) reveal
their capabilities to detect subsurface resistivity changes both, in space and time. Processes and changes in regard to liquid water content and ice content are observed to exist at short distances even though the active layer is not subject to a considerable thickening
over the past 7 years. The stability of the active layer is verified by borehole temperature data. No synchronous
trend is recognized in permafrost temperatures and together with multi-annual electrical resistivity data they indicate degradation and aggradation processes to occur at the same time. Different heat transfer mechanisms, especially during winter, are recognized by means of temperature sensors above, at, and beneath the surface. Based on surface and borehole temperature data the snow cover is assessed as the major controlling factor for the thermal regime on a local scale. Beyond that, the debris size of the substrate, which modifies the snow cover and regulates air exchange processes above the ground, plays a crucial role as an additional buffer layer. A fundamental control over the stability of local permafrost patches is attributed to the ice-rich transient layer at the base of the active layer. The refreezing of melt water in spring is illustrated with diurnal ERT monitoring data from glacier forefield Murtèl.
Based on these ERT and borehole temperature data a conceptual model of active layer processes between autumn and spring is developed. The latent heat that is inherent in the transient layer protects the permafrost beneath from additional energy input from the surface as long as the refreezing of melt water in spring prevails and sufficient ice is build up each spring. Permafrost sites without a transient layer show considerably higher
temperatures at their table and are more prone to degradation in the years and decades ahead. As main investigation area a glacier forefield beneath the summits of Piz Murtèl and Piz Corvatsch in the Swiss Engadin was chosen. It is located west of the well-known
rock glacier Murtèl. Here, a permafrost body inside and adjacent to the lateral moraine was investigated and could be delineated very well. In the surrounding glacier forefield no further indications of permafrost occurrence could be made. Geophysical data and temperature values from the surface and from a permafrost borehole were compared with long-term data from proximate glacier forefield Muragl (Engadin). Results from both
sites show a considerable stability of the active layer depth in summer while at the same time geophysical data demonstrate annual changes in the amount of liquid water content and ice content in the course of years.
A third investigation area is located in the German Alps. The Zugspitzplatt is a high mountain valley with considerably more precipitation and thicker snow cover compared to both Swiss sites. In close proximity to the present glacier and at a large talus slope beneath the summit crest ground ice could be observed. The high subsurface resistivity values and comparable data from existing studies at the Zugspitze may indicate the presence of sedimentary ice in the subsurface of the karstified Zugspitzplatt. Based on these complementary data from geophysical and temperature measurements as
well as geomorphological field mapping the development of permafrost in glacier forefields under climate change conditions is analyzed with cooperation partners from the SPCC project. Ground temperature simulations forced with long-term climatological data are modeled to assess future permafrost development in glacier forefield Murtèl. Results suggest that permafrost is stable as long as the ice-rich layer between the active layer and
the permafrost table exists. After a tipping point is reached, the disintegration of frozen ground starts to proceed rapidly from the top.