571 Physiologie und verwandte Themen
Refine
Has Fulltext
- yes (57)
Is part of the Bibliography
- yes (57)
Year of publication
Document Type
- Doctoral Thesis (34)
- Journal article (23)
Keywords
- Elektrophysiologie (4)
- Drosophila (3)
- Latrophilin (3)
- Mitose (3)
- Taufliege (3)
- Cyclo-GMP (2)
- Drosophila melanogaster (2)
- Fluoreszenzmikroskopie (2)
- Gastrointestinaltrakt (2)
- Lungenkrebs (2)
Institute
- Theodor-Boveri-Institut für Biowissenschaften (23)
- Graduate School of Life Sciences (21)
- Julius-von-Sachs-Institut für Biowissenschaften (6)
- Physiologisches Institut (5)
- Rudolf-Virchow-Zentrum (4)
- Fakultät für Biologie (2)
- Institut für Klinische Neurobiologie (2)
- Klinik und Poliklinik für Hals-, Nasen- und Ohrenkrankheiten, plastische und ästhetische Operationen (2)
- Klinik und Poliklinik für Psychiatrie, Psychosomatik und Psychotherapie (2)
- Medizinische Fakultät (2)
Sonstige beteiligte Institutionen
The behavior of honeybees and bumblebees relies on a constant sensory integration of abiotic or biotic stimuli. As eusocial insects, a sophisticated intraspecific communication as well as the processing of multisensory cues during foraging is of utter importance. To tackle the arising challenges, both honeybees and bumblebees have evolved a sophisticated olfactory and visual processing system.
In both organisms, olfactory reception starts at the antennae, where olfactory sensilla cover the antennal surface in a sex-specific manner. These sensilla house olfactory receptor neurons (ORN) that express olfactory receptors. ORNs send their axons via four tracts to the antennal lobe (AL), the prime olfactory processing center in the bee brain. Here, ORNs specifically innervate spheroidal structures, so-called glomeruli, in which they form synapses with local interneurons and projection neurons (PN). PNs subsequently project the olfactory information via two distinct tracts, the medial and the lateral antennal-lobe tract, to the mushroom body (MB), the main center of sensory integration and memory formation. In the honeybee calyx, the sensory input region of the MB, PNs synapse on Kenyon cells (KC), the principal neuron type of the MB. Olfactory PNs mainly innervate the lip and basal ring layer of the calyx. In addition, the basal ring receives input from visual PNs, making it the first site of integration of visual and olfactory information. Visual PNs, carrying sensory information from the optic lobes, send their terminals not only to the to the basal ring compartment but also to the collar of the calyx. Receiving olfactory or visual input, KCs send their axons along the MB peduncle and terminate in the main output regions of the MB, the medial and the vertical lobe (VL) in a layer-specific manner. In the MB lobes, KCs synapse onto mushroom body output neurons (MBON). In so far barely understood processes, multimodal information is integrated by the MBONs and then relayed further into the protocerebral lobes, the contralateral brain hemisphere, or the central brain among others.
This dissertation comprises a dichotomous structure that (i) aims to gain more insight into the olfactory processing in bumblebees and (ii) sets out to broaden our understanding of visual processing in honeybee MBONs.
The first manuscript examines the olfactory processing of Bombus terrestris and specifically investigates sex-specific differences. We used behavioral (absolute conditioning) and electrophysiological approaches to elaborate the processing of ecologically relevant odors (components of plant odors and pheromones) at three distinct levels, in the periphery, in the AL and during olfactory conditioning. We found both sexes to form robust memories after absolute conditioning and to generalize towards the carbon chain length of the presented odors. On the contrary, electroantennographic (EAG) activity showed distinct stimulus and sex-specific activity, e.g. reduced activity towards citronellol in drones. Interestingly, extracellular multi-unit recordings in the AL confirmed stimulus and sex-specific differences in olfactory processing, but did not reflect the differences previously found in the EAG. Here, farnesol and 2,3-dihydrofarnesol, components of sex-specific pheromones, show a distinct representation, especially in workers, corroborating the results of a previous study. This explicitly different representation suggests that the peripheral stimulus representation is an imperfect indication for neuronal representation in high-order neuropils and ecological importance of a specific odor.
The second manuscript investigates MBONs in honeybees to gain more insights into visual processing in the VL. Honeybee MBONs can be categorized into visually responsive, olfactory responsive and multimodal. To clarify which visual features are represented at this high-order integration center, we used extracellular multi-unit recordings in combination with visual and olfactory stimulation. We show for the first time that information about brightness and wavelength is preserved in the VL. Furthermore, we defined three specific classes of visual MBONs that distinctly encode the intensity, identity or simply the onset of a stimulus. The identity-subgroup exhibits a specific tuning towards UV light. These results support the view of the MB as the center of multimodal integration that categorizes sensory input and subsequently channels this information into specific MBON populations.
Finally, I discuss differences between the peripheral representations of stimuli and their distinct processing in high-order neuropils. The unique activity of farnesol in manuscript 1 or the representation of UV light in manuscript 2 suggest that the peripheral representation of a stimulus is insufficient as a sole indicator for its neural activity in subsequent neuropils or its putative behavioral importance. In addition, I discuss the influence of hard-wired concepts or plasticity induced changes in the sensory pathways on the processing of such key stimuli in the peripheral reception as well as in high-order centers like the AL or the MB. The MB as the center of multisensory integration has been broadly examined for its olfactory processing capabilities and receives increasing interest about its visual coding properties. To further unravel its role of sensory integration and to include neglected modalities, future studies need to combine additional approaches and gain more insights on the multimodal aspects in both the input and output region.
Depressive disorders represent one of the main sources for the loss of healthy years of life. One of the reasons for this circumstance is the recurrent course of these disorders, which can be interrupted by current therapeutic approaches, especially in the shortterm, but seem to be maintained at least in part in the long-term. Subsequently, on one hand, this thesis deals with methodological measurement issues in the longitudinal prediction of depressive courses. On the other hand, it addresses two currently discussed neuroscience-based treatment approaches, which are investigated experimentally in a basic-psychological manner and reviewed in the light of their potential to translate results to the application in patient care. These two approaches each address potential mechanisms that may negatively impact long-term disease trajectories: First, stable endophenotypes for vulnerability factors that could regain control over the organism and reactivate maladaptive experiences, or behaviors with increasing temporal distance from therapeutic methods are focused on. In the studies presented, these were influenced by a recently rediscovered method of neuromodulation (transcranial low-intensity focused ultrasound) which is discussed in light of its unique capability to address even deepest, subcortical regions at a high spatial resolution. Lastly, as a second approach, an experimental design for the use of reconsolidation interference is presented, which could provide a first insight into the applicability of corresponding protocols in the field of depressive disorders and thus contribute to the modification, instead of inhibition, of already mentioned endophenotypes. In sum, methodological considerations for monitoring and predicting long-term courses of depression are deducted before two approaches are discussed that could potentially exert positive influences on the recurrent nature of depressive symptoms on their own, in combination with each other, or as augmentation for existing therapeutic procedures.
The epithelial layer of the gastrointestinal (GI) tract provides a barrier between the environment and the body. Dysfunction of the epithelium, including changes of the innate immune response facilitated by pattern recognition receptors (PRRs), plays a major role in the development of GI disorders. However, the organization of innate immune sensing, the expression and activity of PRRs and the factors contri¬buting to such possible organization along the GI tract are unclear. In recent years, stem cell-derived organoids gained increasing attention as promising tissue models. Here, a biobank of human and murine organoids comprising three lines from each GI segment; corpus, pylorus, duodenum, jejunum, ileum, colon was generated. RNA sequencing of 42 lines confirmed the preservation of tissue identity and revealed an extensive organization of innate immune signaling components along the cephalocaudal axis, giving each segment a specific innate immune profile. Comple-menting the region-specific expression analysis, several PRRs in human and murine organoids showed region- and species-specific function. To investigate the factors contributing to the patterning of innate immunity in the GI tract, the impact of microbial components was analyzed using murine embryo-derived, never colonized gastric and proximal intestinal organoids. Transcriptional profiling of embryo-derived organoids showed that while expression of some PRRs may depend on environmental cues as expected, an unexpectedly large part of segment-specific expression of PRR signaling components is independent of prior contact with microbial products. Further, analysis of published RNA-seq data as well as in vitro experiments using directed differentiation of organoids into specific cell types showed that expression of innate immune gene also depended on cellular differentiation along the crypt-villus axis. This underlined the importance of cellular differentiation rather than contact to microbial compounds for expression of PRRs. Lastly, analysis of published datasets of RNA-seq and ATAC-seq after knockout of the intestinal transcription factor Cdx2 demonstrated that Cdx2 is likely important for the expression of Nlrp6 and Naip1 in the murine intestine. Future experiments have to support these preliminary findings. Taken together, the expression of a large part of epithelial innate immunity is develop¬mentally defined and conserved in tissue-resident stem cells. The identification of mechanisms governing expression of genes related to immunity will provide further insights into the mechanisms that play a role in the progress of inflammatory diseases.
Significant advances in fluorescence imaging techniques enable life scientists today to gain insights into biological systems at an unprecedented scale. The interpretation of image features in such bioimage datasets and their subsequent quantitative analysis is referred to as bioimage analysis. A substantial proportion of bioimage analyses is still performed manually by a human expert - a tedious process that is long known to be subjective. Particularly in tasks that require the annotation of image features with a low signal-to-noise ratio, like in fluorescence images of tissue samples, the inter-rater agreement drops. However, like any other scientific analysis, also bioimage analysis has to meet the general quality criteria of quantitative research, which are objectivity, reliability, and validity. Thus, the automation of bioimage analysis with computer-aided approaches is highly desirable. Albeit conventional hard-coded algorithms are fully unbiased, a human user has to set its respective feature extraction parameters. Thus, also these approaches can be considered subjective.
Recently, deep learning (DL) has enabled impressive advances in computer vision research. The predominant difference between DL and conventional algorithms is the capability of DL models to learn the respective task on base of an annotated training dataset, instead of following user-defined rules for feature extraction. This thesis hypothesized that DL can be used to increase the objectivity, reliability, and validity of bioimage analyses, thus going beyond mere automation. However, in absence of ground truth annotations, DL models have to be trained on manual and thus subjective annotations, which could cause the model to incorporate such a bias. Moreover, model training is stochastic and even training on the same data could result in models with divergent outputs. Consequently, both the training on subjective annotations and the model-to-model variability could impair the quality of DL-based bioimage analyses. This thesis systematically assessed the impacts of these two limitations experimentally by analyzing fluorescence signals of a protein called cFOS in mouse brain sections. Since the abundance of cFOS correlates with mouse behavior, behavioral analyses could be used for cross-validation of the bioimage analysis results. Furthermore, this thesis showed that pooling the input of multiple human experts during model training and integration of multiple trained models in a model ensemble can mitigate the impact of these limitations. In summary, the present study establishes guidelines for how DL can be used to increase the general quality of bioimage analyses.
These days, treatment of melanoma patients relies on targeted therapy with BRAF/MEK inhibitors and on immunotherapy. About half of all patients initially respond to existing therapies. Nevertheless, the identification of alternative therapies for melanoma patients with intrinsic or acquired resistance is of great importance. In melanoma, antioxidants play an essential role in the maintenance of the redox homeostasis. Therefore, disruption of the redox homeostasis is regarded as highly therapeutically relevant and is the focus of the present work.
An adequate supply of cysteine is essential for the production of the most important intracellular antioxidants, such as glutathione. In the present work, it was investigated whether the depletion of cysteine and glutathione is therapeutically useful. Depletion of glutathione in melanoma cells could be achieved by blocking cysteine supply, glutathione synthesis, and NADPH regeneration. As expected, this led to an increased level of reactive oxygen species (ROS). Surprisingly, however, these changes did not impair the proliferation and survival of the melanoma cells. In contrast, glutathione depletion led to cellular reprogramming which was characterized by the induction of mesenchymal genes and the repression of differentiation markers (phenotypic switch). This was accompanied by an increased migration and invasion potential which was favored by the induction of the transcription factor FOSL1. To study in vivo reprogramming, Gclc, the first and rate-limiting enzyme in glutathione synthesis, was knocked out by CRISPR/Cas9 in murine melanoma cells. The cells were devoid of glutathione, but were fully viable and showed a phenotypic switch, the latter only in MITF-expressing B16F1 cells and not in MITF-deficient D4M3A.781 cells. Following subcutaneous injection into immunocompetent C57BL/6 mice, Gclc knockout B16F1 cells grew more aggressively and resulted in an earlier tumor onset than B16F1 control cells.
In summary, this work demonstrates that inhibition of cysteine supply and thus, glutathione synthesis leads to cellular reprogramming in melanoma. In this context, melanoma cells show metastatic capabilities, promoting a more aggressive form of the disease.
The liver plays a pivotal role in maintaining energy homeostasis. Hepatic carbohydrate and lipid metabolism are tightly regulated in order to adapt quickly to changes in nutrient availability. Postprandially, the liver lowers the blood glucose levels and stores nutrients in form of glycogen and triglycerides (TG). In contrast, upon fasting, the liver provides glucose, TG, and ketone bodies. However, obesity resulting from a discrepancy in food intake and energy expenditure leads to abnormal fat accumulation in the liver, which is associated with the development of hepatic insulin resistance, non-alcoholic fatty liver disease, and diabetes. In this context, hepatic insulin resistance is directly linked to the accumulation of diacylglycerol (DAG) in the liver. Besides being an intermediate product of TG synthesis, DAG serves as second messenger in response to G-protein coupled receptor signaling. Protein kinase D (PKD) family members are DAG effectors that integrate multiple metabolic inputs. However, the impact of PKD signaling on liver physiology has not been studied so far. In this thesis, PKD3 was identified as the predominantly expressed isoform in liver. Stimulation of primary hepatocytes with DAG as well as high-fat diet (HFD) feeding of mice led to an activation of PKD3, indicating its relevance during obesity. HFD-fed mice lacking PKD3 specifically in hepatocytes displayed significantly improved glucose tolerance and insulin sensitivity. However, at the same time, hepatic deletion of PKD3 in mice resulted in elevated liver weight as a consequence of increased hepatic lipid accumulation. Lack of PKD3 in hepatocytes promoted sterol regulatory element-binding protein (SREBP)-mediated de novo lipogenesis in vitro and in vivo, and thus increased hepatic triglyceride and cholesterol content. Furthermore, PKD3 suppressed the activation of SREBP by impairing the activity of the insulin effectors protein kinase B (AKT) and mechanistic target of rapamycin complexes (mTORC) 1 and 2. In contrast, liver-specific overexpression of constitutive active PKD3 promoted glucose intolerance and insulin resistance. Taken together, lack of PKD3 improves hepatic insulin sensitivity but promotes hepatic lipid accumulation. For this reason, manipulating PKD3 signaling might be a valid strategy to improve hepatic lipid content or insulin sensitivity. However, the exact molecular mechanism by which PKD3 regulates hepatocytes metabolism remains unclear.
Unbiased proteomic approaches were performed in order to identify PKD3 phosphorylation targets. In this process, numerous potential targets of PKD3 were detected, which are implicated in different aspects of cellular metabolism. Among other hits, phenylalanine hydroxylase (PAH) was identified as a target of PKD3 in hepatocytes. PAH is the enzyme that is responsible for the conversion of phenylalanine to tyrosine. In fact, manipulation of PKD3 activity using genetic tools confirmed that PKD3 promotes PAH-dependent conversion of phenylalanine to tyrosine. Therefore, the data in this thesis suggests that PKD3 coordinates lipid and amino acid metabolism in the liver and contributes to the development of hepatic dysfunction.
An optochemokine tandem was developed to control the release of calcium from endosomes into the cytosol by light and to analyze the internalization kinetics of G-protein coupled receptors (GPCRs) by electrophysiology. A previously constructed rhodopsin tandem was re-engineered to combine the light-gated Ca\(^{2+}\)-permeable cation channel Channelrhodopsin-2(L132C), CatCh, with the chemokine receptor CXCR4 in a functional tandem protein tCXCR4/CatCh. The GPCR was used as a shuttle protein to displace CatCh from the plasma membrane into intracellular areas. As shown by patch-clamp measurements and confocal laser scanning microscopy, heterologously expressed tCXCR4/CatCh was internalized via the endocytic SDF1/CXCR4 signaling pathway. The kinetics of internalization could be followed electrophysiologically via the amplitude of the CatCh signal. The light-induced release of Ca\(^{2+}\) by tandem endosomes into the cytosol via CatCh was visualized using the Ca\(^{2+}\)-sensitive dyes rhod2 and rhod2-AM showing an increase of intracellular Ca\(^{2+}\) in response to light.
Touch sensation is the ability to perceive mechanical cues which is required for essential behaviors. These encompass the avoidance of tissue damage, environmental perception, and social interaction but also proprioception and hearing. Therefore research on receptors that convert mechanical stimuli into electrical signals in sensory neurons remains a topical research focus. However, the underlying molecular mechanisms for mechano-metabotropic signal transduction are largely unknown, despite the vital role of mechanosensation in all corners of physiology.
Being a large family with over 30 mammalian members, adhesion-type G protein-coupled receptors (aGPCRs) operate in a vast range of physiological processes. Correspondingly, diverse human diseases, such as developmental disorders, defects of the nervous system, allergies and cancer are associated with these receptor family. Several aGPCRs have recently been linked to mechanosensitive functions suggesting, that processing of mechanical stimuli may be a common feature of this receptor family – not only in classical mechanosensory structures.
This project employed Drosophila melanogaster as the candidate to analyze the aGPCR Latrophilin/dCIRL function in mechanical nociception in vivo. To this end, we focused on larval sensory neurons and investigated molecular mechanisms of dCIRL activity using noxious mechanical stimuli in combination with optogenetic tools to manipulate second messenger pathways. In addition, we made use of a neuropathy model to test for an involvement of aGPCR signaling in the malfunctioning peripheral nervous system. To do so, this study investigated and characterized nocifensive behavior in dCirl null mutants (dCirlKO) and employed genetically targeted RNA-interference (RNAi) to cell-specifically manipulate nociceptive function.
The results revealed that dCirl is transcribed in type II class IV peripheral sensory neurons – a cell type that is structurally similar to mammalian nociceptors and detects different nociceptive sensory modalities. Furthermore, dCirlKO larvae showed increased nocifensive behavior which can be rescued in cell specific reexpression experiments. Expression of bPAC (bacterial photoactivatable adenylate cyclase) in these nociceptive neurons enabled us to investigate an intracellular signaling cascade of dCIRL function provoked by light-induced elevation of cAMP. Here, the findings demonstrated that dCIRL operates as a down-regulator of nocifensive behavior by modulating nociceptive neurons. Given the clinical relevance of this results, dCirl function was tested in a chemically induced neuropathy model where it was shown that cell specific overexpression of dCirl rescued nocifensive behavior but not nociceptor morphology.
The Venus flytrap Dionaea muscipula counts prey-induced action potentials to induce sodium uptake
(2016)
Carnivorous plants, such as the Venus flytrap (Dionaea muscipula), depend on an animal diet when grown in nutrient-poor soils. When an insect visits the trap and tilts the mechanosensors on the inner surface, action potentials (APs) are fired. After a moving object elicits two APs, the trap snaps shut, encaging the victim. Panicking preys repeatedly touch the trigger hairs over the subsequent hours, leading to a hermetically closed trap, which via the gland-based endocrine system is flooded by a prey-decomposing acidic enzyme cocktail. Here, we asked the question as to how many times trigger hairs have to be stimulated (e.g., now many APs are required) for the flytrap to recognize an encaged object as potential food, thus making it worthwhile activating the glands. By applying a series of trigger-hair stimulations, we found that the touch hormone jasmonic acid (JA) signaling pathway is activated after the second stimulus, while more than three APs are required to trigger an expression of genes encoding prey-degrading hydrolases, and that this expression is proportional to the number of mechanical stimulations. A decomposing animal contains a sodium load, and we have found that these sodium ions enter the capture organ via glands. We identified a flytrap sodium channel DmHKT1 as responsible for this sodium acquisition, with the number of transcripts expressed being dependent on the number of mechano-electric stimulations. Hence, the number of APs a victim triggers while trying to break out of the trap identifies the moving prey as a struggling Na\(^+\)-rich animal and nutrition for the plant.
The animal diet of the carnivorous Venus flytrap, Dionaea muscipula, contains a sodium load that enters the capture organ via an HKT1-type sodium channel, expressed in special epithelia cells on the inner trap lobe surface. DmHKT1 expression and sodium uptake activity is induced upon prey contact. Here, we analyzed the HKT1 properties required for prey sodium osmolyte management of carnivorous Dionaea. Analyses were based on homology modeling, generation of model-derived point mutants, and their functional testing in Xenopus oocytes. We showed that the wild-type HKT1 and its Na\(^+\)- and K\(^+\)-permeable mutants function as ion channels rather than K\(^+\) transporters driven by proton or sodium gradients. These structural and biophysical features of a high-capacity, Na\(^+\)-selective ion channel enable Dionaea glands to manage prey-derived sodium loads without confounding the action potential-based information management of the flytrap.