572 Biochemie
Refine
Has Fulltext
- yes (98)
Is part of the Bibliography
- yes (98)
Year of publication
Document Type
- Doctoral Thesis (53)
- Journal article (40)
- Master Thesis (2)
- Preprint (2)
- Book article / Book chapter (1)
Keywords
- Transkriptionsfaktor (5)
- DNS-Reparatur (4)
- Ubiquitin (4)
- Regulation (3)
- SMN (3)
- Saccharomyces cerevisiae (3)
- TFIIH (3)
- Thrombozyt (3)
- gene expression (3)
- mass spectrometry (3)
Institute
- Graduate School of Life Sciences (37)
- Lehrstuhl für Biochemie (33)
- Theodor-Boveri-Institut für Biowissenschaften (23)
- Rudolf-Virchow-Zentrum (14)
- Institut für Molekulare Infektionsbiologie (7)
- Institut für Experimentelle Biomedizin (4)
- Fakultät für Chemie und Pharmazie (3)
- Institut für Pharmazie und Lebensmittelchemie (3)
- Medizinische Klinik und Poliklinik II (3)
- Comprehensive Cancer Center Mainfranken (2)
Schriftenreihe
Sonstige beteiligte Institutionen
ResearcherID
p97 uses the energy of ATP hydrolysis to unfold and thereby segregate proteins. It is involved in various cellular processes such as proteasomal degradation, DNA damage repair, autophagy, and endo-lysosomal trafficking. The specificity for these processes is controlled by more than 30 regulatory cofactors.
Interactions of p97 with cofactors and target proteins are known to be highly dynamic and transient. To identify new interaction partners and to uncover novel cellular functions of p97, the interactome of endogenous p97 was determined by using in cellulo crosslinking followed by immunoprecipitation and mass spectrometry. Myoferlin (MYOF) was identified as a novel interactor of p97 and the interaction was validated in reciprocal immunoprecipitation experiments for different cell lines.
The ferlin family member MYOF is a tail-anchored membrane protein containing multiple C2 domains. MYOF is involved in various membrane repair and trafficking processes such as the endocytic recycling of cell surface receptors. The MYOF interactome was determined by mass spectrometry. Among others, the p97 cofactor PLAA, CD71 and Rab14 were identified as common interactors of p97 and MYOF. Immunoprecipitation experiments with PLAA KO cells revealed that the interaction between MYOF and p97 depends on PLAA. Immunofluorescence microscopy showed a co-localization of MYOF with Rab14 and Rab11, which are both involved in endocytic recycling pathways. Furthermore, immunofluoroscence experiments revealed that MYOF and the p97 cofactor PLAA are localized to Rab14- and Rab5-positive endosomal compartments.
Using p97 inhibitors and p97 trapping mutants, the presence of p97 at MYOF-positive and Rab14-positive structures could be demonstrated. Consistent with this finding, the endocytic recycling of transferrin was delayed upon inhibition of p97. Taken together, this work identified MYOF as a novel interactor of p97 and suggests a role for p97 in the recycling of endocytic cargo.
Cell culture and protein target-based compound screening strategies, though broadly utilized in selecting candidate compounds, often fail to eliminate candidate compounds with non-target effects and/or safety concerns until late in the drug developmental process. Phenotype screening using intact research animals is attractive because it can help identify small molecule candidate compounds that have a high probability of proceeding to clinical use. Most FDA approved, first-in-class small molecules were identified from phenotypic screening. However, phenotypic screening using rodent models is labor intensive, low-throughput, and very expensive. As a novel alternative for small molecule screening, we have been developing gene expression disease profiles, termed the Transcriptional Disease Signature (TDS), as readout of small molecule screens for therapeutic molecules. In this concept, compounds that can reverse, or otherwise affect known disease-associated gene expression patterns in whole animals may be rapidly identified for more detailed downstream direct testing of their efficacy and mode of action. To establish proof of concept for this screening strategy, we employed a transgenic strain of a small aquarium fish, medaka (Oryzias latipes), that overexpresses the malignant melanoma driver gene xmrk, a mutant egfr gene, that is driven by a pigment cell-specific mitf promoter. In this model, melanoma develops with 100% penetrance. Using the transgenic medaka malignant melanoma model, we established a screening system that employs the NanoString nCounter platform to quantify gene expression within custom sets of TDS gene targets that we had previously shown to exhibit differential transcription among xmrk-transgenic and wild-type medaka. Compound-modulated gene expression was identified using an internet-accessible custom-built data processing pipeline. The effect of a given drug on the entire TDS profile was estimated by comparing compound-modulated genes in the TDS using an activation Z-score and Kolmogorov-Smirnov statistics. TDS gene probes were designed that target common signaling pathways that include proliferation, development, toxicity, immune function, metabolism and detoxification. These pathways may be utilized to evaluate candidate compounds for potential favorable, or unfavorable, effects on melanoma-associated gene expression. Here we present the logistics of using medaka to screen compounds, as well as, the development of a user-friendly NanoString data analysis pipeline to support feasibility of this novel TDS drug-screening strategy.
Ubiquitination is an important post-translational modification that maintains cellular homeostasis by regulating various biological processes. Deubiquitinases (DUBs) are enzymes that reverse the ubiquitination process by catalyzing the removal of ubiquitin from a substrate. Abnormal expression or function of DUBs is often associated with the onset and progression of various diseases, including cancer. Ubiquitin specific proteases (USPs), which constitute the largest family of DUBs in humans, have become the center of interest as potential targets in cancer therapy as many of them display increased activity or are overexpressed in a range of malignant tumors or the tumor microenvironment.
Two related members of the USP family, USP28 and USP25, share high sequence identities but play diverse biological roles. USP28 regulates cell proliferation, oncogenesis, DNA damage repair and apoptosis, whereas USP25 is involved in the anti-viral response, innate immunity and ER-associated degradation in addition to carcinogenesis. USP28 and USP25 also exhibit different oligomeric states – while USP28 is a constitutively active dimer, USP25 assumes an auto-inhibited tetrameric structure. The catalytic domains of both USP28 and USP25 comprise the canonical, globular USP-domain but contain an additional, extended insertion site called USP25/28 catalytic domain inserted domain (UCID) that mediates oligomerization of the proteins. Disruption of the USP25 tetramer leads to the formation of an activated dimeric protein. However, it is still not clear what triggers its activation.
Due to their role in maintaining and stabilizing numerous oncoproteins, USP28 and USP25 have emerged as interesting candidates for anti-cancer therapy. Recent advances in small-molecular inhibitor development have led to the discovery of relatively potent inhibitors of USP28 and USP25. This thesis focuses on the structural elucidation of USP28 and the biochemical characterization of USP28/USP25, both in complex with representatives of three out of the eight compound classes reported as USP28/USP25-specific inhibitors. The crystal structures of USP28 in complex with the AZ compounds, Vismodegib and FT206 reveal that all three inhibitor classes bind into the same allosteric pocket distant from the catalytic center, located between the palm and the thumb subdomains (the S1-site). Intriguingly, this binding pocket is identical to the UCID-tip binding interface in the USP25 tetramer, rendering the protein in a locked, inactive conformation. Formation of the binding pocket in USP28 requires a shift in the helix α5, which induces conformational changes and local distortion of the binding channel that typically accommodates the C-terminal tail of Ubiquitin, thus preventing catalysis and abrogating USP28 activity. The key residues of the USP28-inhibitor binding pocket are highly conserved in USP25. Mutagenesis studies of these residues accompanied by biochemical and biophysical assays confirm the proposed mechanism of inhibition and similar binding to USP25.
This work provides valuable insights into the inhibition mechanism of the small molecule compounds specifically for the DUBs USP28 and USP25. The USP28-inhibitor complex structures offer a framework to develop more specific and potent inhibitors.
Glycine receptor (GlyR) autoantibodies are associated with stiff-person syndrome and the life-threatening progressive encephalomyelitis with rigidity and myoclonus in children and adults. Patient histories show variability in symptoms and responses to therapeutic treatments. A better understanding of the autoantibody pathology is required to develop improved therapeutic strategies. So far, the underlying molecular pathomechanisms include enhanced receptor internalization and direct receptor blocking altering GlyR function. A common epitope of autoantibodies against the GlyRα1 has been previously defined to residues 1A-33G at the N-terminus of the mature GlyR extracellular domain. However, if other autoantibody binding sites exist or additional GlyR residues are involved in autoantibody binding is yet unknown. The present study investigates the importance of receptor glycosylation for binding of anti-GlyR autoantibodies. The glycine receptor α1 harbors only one glycosylation site at the amino acid residue asparagine 38 localized in close vicinity to the identified common autoantibody epitope. First, non-glycosylated GlyRs were characterized using protein biochemical approaches as well as electrophysiological recordings and molecular modeling. Molecular modeling of non-glycosylated GlyRα1 did not show major structural alterations. Moreover, non-glycosylation of the GlyRα1N38Q did not prevent the receptor from surface expression. At the functional level, the non-glycosylated GlyR demonstrated reduced glycine potency, but patient GlyR autoantibodies still bound to the surface-expressed non-glycosylated receptor protein in living cells. Efficient adsorption of GlyR autoantibodies from patient samples was possible by binding to native glycosylated and non-glycosylated GlyRα1 expressed in living not fixed transfected HEK293 cells. Binding of patient-derived GlyR autoantibodies to the non-glycosylated GlyRα1 offered the possibility to use purified non-glycosylated GlyR extracellular domain constructs coated on ELISA plates and use them as a fast screening readout for the presence of GlyR autoantibodies in patient serum samples. Following successful adsorption of patient autoantibodies by GlyR ECDs, binding to primary motoneurons and transfected cells was absent. Our results indicate that the glycine receptor autoantibody binding is independent of the receptor’s glycosylation state. Purified non-glycosylated receptor domains harbouring the autoantibody epitope thus provide, an additional reliable experimental tool besides binding to native receptors in cell-based assays for detection of autoantibody presence in patient sera.
Vitamin B6 deficiency has been linked to cognitive impairment in human brain disorders for decades. Still, the molecular mechanisms linking vitamin B6 to these pathologies remain poorly understood, and whether vitamin B6 supplementation improves cognition is unclear as well. Pyridoxal phosphatase (PDXP), an enzyme that controls levels of pyridoxal 5’-phosphate (PLP), the co-enzymatically active form of vitamin B6, may represent an alternative therapeutic entry point into vitamin B6-associated pathologies. However, pharmacological PDXP inhibitors to test this concept are lacking. We now identify a PDXP and age-dependent decline of PLP levels in the murine hippocampus that provides a rationale for the development of PDXP inhibitors. Using a combination of small molecule screening, protein crystallography and biolayer interferometry, we discover and analyze 7,8-dihydroxyflavone (7,8-DHF) as a direct and potent PDXP inhibitor. 7,8-DHF binds and reversibly inhibits PDXP with low micromolar affinity and sub-micromolar potency. In mouse hippocampal neurons, 7,8-DHF increases PLP in a PDXP-dependent manner. These findings validate PDXP as a druggable target. Of note, 7,8-DHF is a well-studied molecule in brain disorder models, although its mechanism of action is actively debated. Our discovery of 7,8-DHF as a PDXP inhibitor offers novel mechanistic insights into the controversy surrounding 7,8-DHF-mediated effects in the brain.
The pancreas is the key organ for the maintenance of euglycemia. This is regulated in particular by α-cell-derived glucagon and β-cell-derived insulin, which are released in response to nutrient deficiency and elevated glucose levels, respectively. Although glucose is the main regulator of insulin secretion, it is significantly enhanced by various potentiators.
Platelets are anucleate cell fragments in the bloodstream that are essential for hemostasis to prevent and stop bleeding events. Besides their classical role, platelets were implemented to be crucial for other physiological and pathophysiological processes, such as cancer progression, immune defense, and angiogenesis. Platelets from diabetic patients often present increased reactivity and basal activation. Interestingly, platelets store and release several substances that have been reported to potentiate insulin secretion by β-cells. For these reasons, the impact of platelets on β-cell functioning was investigated in this thesis.
Here it was shown that both glucose and a β-cell-derived substance/s promote platelet activation and binding to collagen. Additionally, platelet adhesion specifically to the microvasculature of pancreatic islets was revealed, supporting the hypothesis of their influence on glucose homeostasis. Genetic or pharmacological ablation of platelet functioning and platelet depletion consistently resulted in reduced insulin secretion and associated glucose intolerance. Further, the platelet-derived lipid fraction was found to enhance glucose-stimulated insulin secretion, with 20-hydroxyeicosatetraenoic acid (20-HETE) and possibly also lyso-precursor of platelet-activating factor (lysoPAF) being identified as crucial factors. However, the acute platelet-stimulated insulin secretion was found to decline with age, as did the levels of platelet-derived 20-HETE. In addition to their direct stimulatory effect on insulin secretion, specific defects in platelet activation have also been shown to affect glucose homeostasis by potentially influencing islet vascular development. Taking together, the results of this thesis suggest a direct and indirect mechanism of platelets in the regulation of insulin secretion that ensures glucose homeostasis, especially in young individuals.
Sharks occupy diverse ecological niches and play critical roles in marine ecosystems, often acting as apex predators. They are considered a slow-evolving lineage and have been suggested to exhibit exceptionally low cancer rates. These two features could be explained by a low nuclear mutation rate. Here, we provide a direct estimate of the nuclear mutation rate in the epaulette shark (Hemiscyllium ocellatum). We generate a high-quality reference genome, and resequence the whole genomes of parents and nine offspring to detect de novo mutations. Using stringent criteria, we estimate a mutation rate of 7×10\(^{−10}\) per base pair, per generation. This represents one of the lowest directly estimated mutation rates for any vertebrate clade, indicating that this basal vertebrate group is indeed a slowly evolving lineage whose ability to restore genetic diversity following a sustained population bottleneck may be hampered by a low mutation rate.
Lung cancer is the main cause of cancer-related deaths worldwide. Despite the availability of several targeted therapies and immunotherapies in the clinics, the prognosis for lung cancer remains poor. A major problem for the low benefit of these therapies is intrinsic and acquired resistance, asking for pre-clinical models for closer investigation of predictive biomarkers for refined personalized medicine and testing of possible combination therapies as well as novel therapeutic approaches to break resistances.
One third of all lung adenocarcinoma harbor mutations in the KRAS gene, of which 39 % are transitions from glycine to cysteine in codon 12 (KRASG12C). Being considered “undruggable” in previous decades, KRASG12C-inhibitors now paved the way into the standard-of-care for lung adenocarcinoma treatment in the clinics. Still, the overall response rates as well as overall survival of patients treated with KRASG12C-inhibitors are sobering. Therefore, 3D KRASG12C-biomarker in vitro models were developed based on a decellularized porcine jejunum (SISmuc) using commercial and PDX-derived cell lines and characterized in regards of epithelial-mesenchymal-transition (EMT), stemness, proliferation, invasion and c-MYC expression as well as the sensitivity towards KRASG12C-inhibiton. The phenotype of lung tumors harboring KRAS mutations together with a c-MYC overexpression described in the literature regarding invasion and proliferation for in vivo models was well represented in the SISmuc models. A higher resistance towards targeted therapies was validated in the 3D models compared to 2D cultures, while reduced viability after treatment with combination therapies were exclusively observed in the 3D models. In the test system neither EMT, stemness nor the c-MYC expression were directly predictive for drug sensitivity. Testing of a panel of combination therapies, a sensitizing effect of the aurora kinase A (AURKA) inhibitor alisertib for the KRASG12C-inhibitor ARS-1620 directly correlating with the level of c-MYC expression in the corresponding 3D models was observed. Thereby, the capability of SISmuc tumor models as an in vitro test system for patient stratification was demonstrated, holding the possibility to reduce animal experiments.
Besides targeted therapies the treatment of NSCLC with oncolytic viruses (OVs) is a promising approach. However, a lack of in vitro models to test novel OVs limits the transfer from bench to bedside. In this study, 3D NSCLC models based on the SISmuc were evaluated for their capability to perform efficacy and risk assessment of oncolytic viruses (OVs) in a pre-clinical setting. Hereby, the infection of cocultures of tumor cells and fibroblasts on the SISmuc with provided viruses demonstrated that in contrast to a wildtype herpes simplex virus 1 (HSV-1) based OV, the attenuated version of the OV exhibited specificity for NSCLC cells with a more advanced and highly proliferative phenotype, while fibroblasts were no longer permissive for infection. This approach introduced SISmuc tumor models as novel test system for in vitro validation of OVs.
Finally, a workflow for validating the efficacy of anti-cancer therapies in 3D tumor spheroids was established for the transfer to an automated platform based on a two-arm-robot system. In a proof-of-concept process, H358 spheroids were characterized and treated with the KRASG12C-inhibitor ARS-1620. A time- and dose-dependent reduction of the spheroid area after treatment was defined together with a live/dead-staining as easy-to-perform and cost-effective assays for automated drug testing that can be readily performed in situ in an automated system.
Gold nanoparticles of diameter ca. 60 nm have been synthesized based on Turkevich and Frens protocols. We have demonstrated that the carboxyl-modified gold nanoparticles can be coupled covalently with antibodies (Ab) of interest using the EDC/NHS coupling procedure. Binding studies with Ab-grafted AuNPs and GpL fusion proteins proved that conjugation of AuNPs with antibodies enables immobilization of antibodies with preservation of a significant antigen binding capacity. More importantly, our findings showed that the conjugation of types of anti-TNF receptors antibodies such as anti-Fn14 antibodies (PDL192 and 5B6) (Aido et al., 2021), anti-CD40, anti-4-1BB and anti-TNFR2 with gold nanoparticles confers them with potent agonism. Thus, our results suggest that AuNPs can be utilized as a platform to immobilize anti-TNFR antibodies which, on the one hand, helps to enhance their agonistic activity in comparison to “free” inactive antibodies by mimicking the effect of cell-anchored antibodies or membrane-bound TNF ligands and, on the other hand, allows to develop new generations of drug delivery systems. These constructs are characterized with their biocompatibility and their tunable synthesis process.
In a further work part, we combined the benefits of the established system of Ab-AuNPs with materials used widely in the modern biofabrication approaches such as the photo-crosslinked hydrogels, methacrylate-modified gelatin (GelMA), combined with embedded variants of human cell lines. The acquired results demonstrated clearly that the attaching of proteins like antibodies to gold nanoparticles might reduce their release rate from the crosslinked hydrogels upon the very low diffusion of gold nanoparticles from the solid constructs to the surrounding medium yielding long-term local functioning proteins-attached particles. Moreover, our finding suggests that hydrogel-embedded AuNP-immobilized antibodies, e.g. anti-TNFα-AuNPs or anti-IL1-AuNPs enable local inhibitory functions,
To sum up, our results demonstrate that AuNPs can act as a platform to attach anti-TNFR antibodies to enhance their agonistic activity by resembling the output of cell-anchoring or membrane bounding. Gold nanoparticles are considered, thus, as promising tool to develop the next generation of drug delivery systems, which may contribute to cancer therapy. On top of that, the embedding of anti-inflammatory-AuNPs in the biofabricated hydrogel presents new innovative strategy of the treatment of autoinflammatory diseases.