621 Angewandte Physik
Refine
Has Fulltext
- yes (16)
Is part of the Bibliography
- yes (16)
Year of publication
Document Type
- Doctoral Thesis (10)
- Journal article (6)
Keywords
- solar cells (3)
- Magnetpartikelbildgebung (2)
- 3D Erdfeld-NMR Tomograph (1)
- 7T (1)
- AI (1)
- Anode (1)
- Aushärtung (1)
- CT (1)
- Cardiac (1)
- Computed Tomography (1)
Institute
Sonstige beteiligte Institutionen
Verschiedene Konzepte der Röntgenmikroskopie haben sich mittlerweile im Labor etabliert und ermöglichen heute aufschlussreiche Einblicke in eine Vielzahl von Probensystemen. Der „Labormaßstab“ bezieht sich dabei auf Analysemethoden, die in Form von einem eigenständigen Gerät betrieben werden können. Insbesondere sind sie unabhängig von der Strahlerzeugung an einer Synchrotron-Großforschungseinrichtung und einem sonst kilometergroßen Elektronen-speicherring. Viele der technischen Innovationen im Labor sind dabei ein Transfer der am Synchrotron entwickelten Techniken. Andere wiederum basieren auf der konsequenten Weiterentwicklung etablierter Konzepte. Die Auflösung allein ist dabei nicht entscheidend für die spezifische Eignung eines Mikroskopiesystems im Ganzen. Ebenfalls sollte das zur Abbildung eingesetzte Energiespektrum auf das Probensystem abgestimmt sein. Zudem muss eine Tomographieanalage zusätzlich in der Lage sein, die Abbildungsleistung bei 3D-Aufnahmen zu konservieren.
Nach einem Überblick über verschiedene Techniken der Röntgenmikroskopie konzentriert sich die vorliegende Arbeit auf quellbasierte Nano-CT in Projektionsvergrößerung als vielversprechende Technologie zur Materialanalyse. Hier können höhere Photonenenergien als bei konkurrierenden Ansätzen genutzt werden, wie sie von stärker absorbierenden Proben, z. B. mit einem hohen Anteil von Metallen, zur Untersuchung benötigt werden. Das bei einem ansonsten idealen CT-Gerät auflösungs- und leistungsbegrenzende Bauteil ist die verwendete Röntgen-quelle. Durch konstruktive Innovationen sind hier die größten Leistungssprünge zu erwarten. In diesem Zuge wird erörtert, ob die Brillanz ein geeignetes Maß ist, um die Leistungsfähigkeit von Röntgenquellen zu evaluieren, welchen Schwierigkeiten die praktische Messung unterliegt und wie das die Vergleichbarkeit der Werte beeinflusst. Anhand von Monte-Carlo-Simulationen wird gezeigt, wie die Brillanz verschiedener Konstruktionen an Röntgenquellen theoretisch bestimmt und miteinander verglichen werden kann. Dies wird am Beispiel von drei modernen Konzepten von Röntgenquellen demonstriert, welche zur Mikroskopie eingesetzt werden können. Im Weiteren beschäftigt sich diese Arbeit mit den Grenzen der Leistungsfähigkeit von Transmissionsröntgenquellen. Anhand der verzahnten Simulation einer Nanofokus-Röntgenquelle auf Basis von Monte-Carlo und FEM-Methoden wird untersucht, ob etablierte Literatur¬modelle auf die modernen Quell-konstruktionen noch anwendbar sind. Aus den Simulationen wird dann ein neuer Weg abgeleitet, wie die Leistungsgrenzen für Nanofokus-Röntgenquellen bestimmt werden können und welchen Vorteil moderne strukturierte Targets dabei bieten.
Schließlich wird die Konstruktion eines neuen Nano-CT-Gerätes im Labor-maßstab auf Basis der zuvor theoretisch besprochenen Nanofokus-Röntgenquelle und Projektionsvergrößerung gezeigt, sowie auf ihre Leistungsfähigkeit validiert. Es ist spezifisch darauf konzipiert, hochauflösende Messungen an Materialsystemen in 3D zu ermöglichen, welche mit bisherigen Methoden limitiert durch mangelnde Auflösung oder Energie nicht umsetzbar waren. Daher wird die praktische Leistung des Gerätes an realen Proben und Fragestellungen aus der Material¬wissenschaft und Halbleiterprüfung validiert. Speziell die gezeigten Messungen von Fehlern in Mikrochips aus dem Automobilbereich waren in dieser Art zuvor nicht möglich.
Die Fluoreszenzmikroskopie ist eine vielseitig einsetzbare Untersuchungsmethode für biologische Proben, bei der Biomoleküle selektiv mit Fluoreszenzfarbstoffen markiert werden, um sie dann mit sehr gutem Kontrast abzubilden. Dies ist auch mit mehreren verschiedenartigen Zielmolekülen gleichzeitig möglich, wobei üblicherweise verschiedene Farbstoffe eingesetzt werden, die über ihre Spektren unterschieden werden können.
Um die Anzahl gleichzeitig verwendbarer Färbungen zu maximieren, wird in dieser Arbeit zusätzlich zur spektralen Information auch das zeitliche Abklingverhalten der Fluoreszenzfarbstoffe mittels spektral aufgelöster Fluoreszenzlebensdauer-Mikroskopie (spectrally resolved fluorescence lifetime imaging microscopy, sFLIM) vermessen. Dazu wird die Probe in einem Konfokalmikroskop von drei abwechselnd gepulsten Lasern mit Wellenlängen von 485 nm, 532nm und 640nm angeregt. Die Detektion des Fluoreszenzlichtes erfolgt mit einer hohen spektralen Auflösung von 32 Kanälen und gleichzeitig mit sehr hoher zeitlicher Auflösung von einigen Picosekunden. Damit wird zu jedem detektierten Fluoreszenzphoton der Anregungslaser, der spektrale Kanal und die Ankunftszeit registriert. Diese detaillierte multidimensionale Information wird von einem Pattern-Matching-Algorithmus ausgewertet, der das Fluoreszenzsignal mit zuvor erstellten Referenzpattern der einzelnen Farbstoffe vergleicht. Der Algorithmus bestimmt so für jedes Pixel die Beiträge der einzelnen Farbstoffe.
Mit dieser Technik konnten pro Anregungslaser fünf verschiedene Färbungen gleichzeitig dargestellt werden, also theoretisch insgesamt 15 Färbungen. In der Praxis konnten mit allen drei Lasern zusammen insgesamt neun Färbungen abgebildet werden, wobei die Anzahl der Farben vor allem durch die anspruchsvolle Probenvorbereitung limitiert war. In anderen Versuchen konnte die sehr hohe Sensitivität des sFLIM-Systems genutzt werden, um verschiedene Zielmoleküle voneinander zu unterscheiden, obwohl sie alle mit demselben Farbstoff markiert waren. Dies war möglich, weil sich die Fluoreszenzeigenschaften eines Farbstoffmoleküls geringfügig in Abhängigkeit von seiner Umgebung ändern. Weiterhin konnte die sFLIM-Technik mit der hochauflösenden STED-Mikroskopie (STED: stimulated emission depletion) kombiniert werden, um so hochaufgelöste zweifarbige Bilder zu erzeugen, wobei nur ein einziger gemeinsamer STED-Laser benötigt wurde.
Die gleichzeitige Erfassung von mehreren photophysikalischen Messgrößen sowie deren Auswertung durch den Pattern-Matching-Algorithmus ermöglichten somit die Entwicklung von neuen Methoden der Fluoreszenzmikroskopie für Mehrfachfärbungen.
Der Vernetzungsgrad von Klebstoffen und strahlenvernetzter Kunststoffformteile beeinflusst zahlreiche Materialeigenschaften und ist von essenzieller Bedeutung für die Funktionalität von Klebeverbindungen und die Beständigkeit medizinischer Implantate.
Die zerstörungsfreie Prüfung dieser Qualitätsgröße ist von großem industriellem Interesse, aber noch nicht Stand der Technik. Die unilaterale Kernspinresonanz (uNMR) ist ein vielversprechendes Verfahren zur Lösung dieser Problematik.
In diesem Buch wird die nicht-invasive Vernetzungsgradprüfung von strahlenvernetztem UHMWPE und verschiedenen Klebstoffen mittels uNMR demonstriert. Auf Basis der guten Korrelation mit praxisrelevanten Referenzmethoden (thermisch, rheologisch, dielektrisch) wurden Vergleichsmodelle entwickelt, welche Anwendern von Klebstoffen und vernetzten Kunststoffformteilen den Einsatz der uNMR zur zerstörungsfreien Qualitätssicherung ermöglichen.
Clinical practice in CMR with respect to cardiovascular disease is currently focused on tissue characterization, and cardiac function, in particular. In recent years MRI based diffusion tensor imaging (DTI) has been shown to enable the assessment of microstructure based on the analysis of Brownian motion of water molecules in anisotropic tissue, such as the myocardium. With respect to both functional and structural imaging, 7T MRI may increase SNR, providing access to information beyond the reach of clinically applied field strengths. To date, cardiac 7T MRI is still a research modality that is only starting to develop towards clinical application.
In this thesis we primarily aimed to advance methods of ultrahigh field CMR using the latest 7T technology and its application towards the functional and structural characterization of the myocardium.
Regarding the assessment of myocardial microstructure at 7T, feasibility of ex vivo DTI of large animal hearts was demonstrated. In such hearts a custom sequence implemented for in vivo DTI was evaluated and fixation induced alterations of derived diffusion metrics and tissue properties were assessed. Results enable comparison of prior and future ex vivo DTI studies and provide information on measurement parameters at 7T.
Translating developed methodology to preclinical studies of mouse hearts, ex vivo DTI provided highly sensitive surrogates for microstructural remodeling in response to subendocardial damage. In such cases echocardiography measurements revealed mild diastolic dysfunction and impaired longitudinal deformation, linking disease induced structural and functional alterations. Complementary DTI and echocardiography data also improved our understanding of structure-function interactions in cases of loss of contractile myofiber tracts, replacement fibrosis, and LV systolic failure.
Regarding the functional characterization of the myocardium at 7T, sequence protocols were expanded towards a dedicated 7T routine protocol, encompassing accurate cardiac planning and the assessment of cardiac function via cine imaging in humans.
This assessment requires segmentation of myocardial contours. For that, artificial intelligence (AI) was developed and trained, enabling rapid automatic generation of cardiac segmentation in clinical data. Using transfer learning, AI models were adapted to cine data acquired using the latest generation 7T system. Methodology for AI based segmentation was translated to cardiac pathology, where automatic segmentation of scar tissue, edema and healthy myocardium was achieved.
Developed radiofrequency hardware facilitates translational studies at 7T, providing controlled conditions for future method development towards cardiac 7T MRI in humans.
In this thesis the latest 7T technology, cardiac DTI, and AI were used to advance methods of ultrahigh field CMR. In the long run, obtained results contribute to diagnostic methods that may facilitate early detection and risk stratification in cardiovascular disease.
Mit der vorliegenden Arbeit werden konventionelle thermische Kraftwerke an deutschen Flüssen identifiziert, bei denen aufgrund hoher Flusswassertemperaturen im Zusammenhang mit wasserrechtlichen Grenzwerten Leistungseinschränkungen auftraten. Weiterhin wird aufgezeigt, wie sich die Wassertemperaturen der Flüsse in der Vergangenheit (rezent) entwickelt haben und wie sie sich zukünftig im Kontext des Klimawandels entwickeln könnten.
Mittels Literaturrecherche, Medienanalyse und schriftlicher Befragung wurden konventionelle thermische Kraftwerke identifiziert, welche wassertemperaturbedingte Leistungseinschränkungen verzeichneten. Die meisten dieser Leistungseinschränkungen zwischen 1976 und 2007 zeigen sich bei großen Kraftwerken mit einer elektrischen Bruttoleistung über 300 Megawatt, bei Steinkohle- und Kernkraftwerken, bei Kraftwerken mit Durchlaufkühlung und bei solchen, die zwischen 1960 und 1990 in Betrieb gingen.
Trendanalysen interpolierter und homogenisierter, rezenter Wassertemperaturzeitreihen deutscher Flüsse ergeben positive Trends v. a. im Frühjahr und Sommer. Die Zählstatistik zeigt in den Jahren 1994, 2003 und 2006 die meisten Tage mit sehr hohen und extrem hohen Wassertemperaturen in den Sommermonaten. In diesen Jahren traten gleichzeitig 63 % aller identifizierter wassertemperaturbedingter Leistungseinschränkungen bei Kraftwerken, meist zwischen Juni und August, auf.
Für die Trendanalysen und den Mittelwertvergleich simulierter zukünftiger Wassertemperaturzeitreihen wurden drei Szenarien – B1, A1B und A2 sowie drei Zukunftsperioden 2011-2040, 2011/2041-2070, 2011/2071-2100 betrachtet. Es ergeben sich für die Zukunftsperiode 2011-2040 des A1B- oder A2-Szenarios in mindestens einem der Sommermonate eine Erwärmung und für das B1-Szenario negative oder keine Trends. Die mittleren Wassertemperaturen der Zukunftsperiode 2011-2040 zeigen in allen drei Szenarien gegenüber denen der Klimanormalperiode 1961-1990 positive Unterschiede in mindestens einem der Sommermonate. Für die beiden späteren Zukunftsperioden bis 2070 bzw. bis 2100 liegen in allen Wassertemperaturzeitreihen der drei Szenarien im Sommer positive Trends bzw. Differenzen gegenüber den mittleren Wassertemperaturen der Klimanormalperiode vor.
Durch die Synthese der drei Analysen ist erkennbar, dass Isar, Rhein, Neckar, Saar, Elbe und Weser die meisten Kraftwerksstandorte mit wassertemperaturbedingten Leistungseinschränkungen verzeichnen. Es zeigen sich hier positive Trends sowohl in den rezenten als auch zukünftigen Wassertemperaturen für die Zukunftsperiode 2011-2040 des A1B- und A2-Szenarios in jeweils mindestens einem der Sommermonate. Gegenüber den mittleren Wassertemperaturen der Klimanormalperiode liegen für alle drei Szenarien positive Unterschiede der Wassertemperaturen vor.
Bei einer Kraftwerkslaufzeit von 40-50 Jahren und einem Kernenergieausstieg 2022 bzw. 2034, werden 48-64 % bzw. 67-91 % der Kraftwerke mit wassertemperaturbedingten Leistungseinschränkungen bis 2022 bzw. 2034 außer Betrieb gehen. Bei einer Laufzeitverlängerung würden nach 2022 fünf der elf betroffenen Kernkraftwerke weiter am Netz bleiben. Somit kann es wieder zu wassertemperaturbedingten Leistungseinschränkungen kommen. In Deutschland sind nach wie vor große Kraftwerke an Flüssen geplant. Deren Kühlsysteme müssen entsprechend ausgewählt und konstruiert werden, um der zu erwartenden Erhöhung der Flusstemperaturen Rechnung zu tragen.
Magnetic Particle Imaging (MPI) ist ein neuartiges tomographisches Bildgebungsverfahren,
welches in der Lage ist, dreidimensional die Verteilung von superparamagnetischen
Nanopartikeln zu detektieren. Aufgrund des direkten Nachweises
des Tracers ist MPI ein sehr schnelles und sensitives Verfahren [12] und benötigt für
eine Einordnung des Tracers (z.B. im Gewebe) eine weitere bildgebende Modalität
wie die Magnetresonanztomographie (MRI) oder die Computertomographie. Die
strukturelle Einordnung wird häufig mit dem Fusion-Imaging-Verfahren durchgeführt,
bei dem die Proben separat in den Geräten vermessen und die Datensätze
retrospektiv korreliert werden [75][76]. In einem ersten Experiment wurde bereits
ein Traveling-Wave-MPI-Scanner (TWMPI) [17] mit einem Niederfeld-MRI-Scanner
kombiniert und die ersten Hybridmessung durchgeführt [15]. Der technische Aufwand,
zwei separate Geräte aufzubauen sowie die Tatsache, dass ein MRI-Gerät
bei 30mT sehr lange benötigt, diente als Motivation für ein integriertes TWMPIMRI-
Hybridsystem, bei dem das dynamische lineare Gradientenarray (dLGA) eines
TWMPI-Scanners intrinsisch das B0-Feld für ein MRI-Gerät erzeugen sollte.
Das Ziel dieser Arbeit war es, die Grundlagen für einen integrierten TWMPI-MRIHybridscanner
zu schaffen. Die Geometrie des dLGAs sollte dabei nicht verändert
werden, damit TWMPI-Messungen weiterhin ohne Einschränkungen möglich sind.
Zusammenfassend werden hier noch mal die wichtigsten Schritte und Ergebnisse
dieser Arbeit aufgezeigt.
Zu Beginn dieser Arbeit wurde mittels Magnetfeldsimulationen nach einer geeigneten
Stromverteilung gesucht, um allein mit dem dLGA ein ausreichend homogenes
Magnetfeld erzeugen zu können. Die Ergebnisse der Simulationen zeigten,
dass bereits zwei unterschiedliche Ströme in 14 der 20 Einzelspulen des dLGAs
genügten, um ein Field of View (FOV) mit der Größe 36mm x 12mm mit ausreichender
Homogenität zu erreichen. Die Homogenität innerhalb des FOVs betrug
dabei 3000 ppm. Für die angestrebte Feldstärke von 235mT waren Stromstärken
von 129A und 124A nötig.
Die hohen Ströme des dLGAs erforderten die Entwicklung eines dafür angepassten
Verstärkers. Das ursprüngliche Konzept, welches auf einem linear angesteuerten
Leistungstransistors aufbaute, wurde in zahlreichen Schritten so weit verbessert,
dass die nötigen Stromstärken stabil an- und ausgeschaltet werden konnten.
Mithilfe eines Ganzkörper-MRIs konnte erstmals das B0-Feld des dLGAs, welches
durch den selbstgebauten Verstärker erzeugt wurde, gemessen und mit der Simulation
verglichen werden. Zwischen den beiden Verläufen zeigte sich eine qualitativ
gute Übereinstimmung.
Das Finden des NMR-Signals stellte wegen des selbstgebauten Verstärkers eine
Herausforderung dar, da zu diesem Zeitpunkt die nötige Präzision noch nicht erreicht
wurde und der wichtigste Parameter, die Magnetfeldstärke im dLGA, nicht
gemessen werden konnte. Dagegen konnte die Länge der Pulse für die Spin-Echo-
Sequenz sehr gut gemessen werden, jedoch war der optimale Wert noch nicht bekannt.
Durch iterative Messungen wurden die richtigen Einstellungen gefunden,
die nach Änderungen an der Hardware jeweils angepasst wurden.
Die Performanz des Verstärkers konnte anhand wiederholter Messungen des NMRSignals
genauer untersucht werden. Es zeigte sich, dass die Präzision weiter verbessert
werden musste, um reproduzierbare Ergebnisse zu erhalten. Mithilfe des
NMR-Signals konnten auch das B0-Feld ausgemessen werden. Es zeigte eine gute
Übereinstimmung zur Simulation. Mithilfe von vier Segmentspulen des dLGAs
war es möglich einen linearen Gradienten entlang der z-Achse zu erzeugen. Ein
Gradient wurde zusätzlich zum B0-Feld geschaltet und ebenfalls ausgemessen.
Auch dieser Verlauf zeigte eine gute Übereinstimmung zur Simulation.
Mithilfe des Gradienten wurde erfolgreich die Frequenzkodierung und die Phasenkodierung
implementiert, durch die bei beiden Messungen zwei Proben anhand
des Ortes unterschieden werden konnten. Damit war die Entwicklung des MRIScanners
abgeschlossen.
Der Aufbau des TWMPI-Scanners benötigte neben dem Bau des dLGAs die Anfertigung
von Sattelspulen. Für die MPI-Messungen konnte der fehlende Teil der
Sendekette sowie die gesamte Empfangskette von einer früheren Version benutzt
werden. Auch für das MPI wurde die Funktionalität mithilfe einer Punktprobe und
eines Phantoms überprüft, allerdings hier in zwei Dimensionen.
Die Erweiterung zu einem Hybridscanner erforderte weitere Modifikationen gegenüber
einem reinen TWMPI- bzw. MRI-Scanner. Es musste ein Weg gefunden
werden, die Beschaltung des dLGAs für die jeweilige Modalität zügig anzupassen.
Dafür wurde ein Steckbrett gebaut, das es erlaubt, die Verkabelung des dLGAs in
kurzer Zeit zu ändern. Außerdem mussten innerhalb des dLGAs die Sattelspulen
und die Empfangsspule des TWMPIs sowie die Empfangsspule des MRIs untergebracht
werden. Ein modulares System erlaubte die gleichzeitige Anordnung aller
Komponenten innerhalb des dLGAs. Das messbare FOV des MRIs ist der Homogenität
des B0-Feldes angepasst, das FOV des TWMPI ist ausgedehnter.
Zum Ende dieser Arbeit wurde erfolgreich eine Hybridmessung durchgeführt. Das
Phantom bestand aus je zwei Kugeln gefüllt mit Öl und mit einem MPI-Tracer
(Resovist). Mit TWMPI war die räumliche Abbildung der Resovistkugeln möglich,
während mit MRI die der Ölkugeln möglich war. Diese in situ Messung zeigte die
erfolgreiche Umsetzung des Konzeptes für den TWMPI-MRI-Hybridscanner.
Zusammenfassend wurden in dieser Arbeit die Grundlagen für einen TWMPIMRI-
Hybridscanner gelegt. Die größte Schwierigkeit bestand darin, ein ausreichend
homogenes B0-Feld für das MRI zu erzeugen, mit dem man ein gutes NMRSignal
aufnehmen konnte. Mit einer einfachen Stromverteilung, bestehend aus zwei
unterschiedlichen Strömen, konnte ein ausreichend homogenes B0-Feld erzeugt
werden. Durch komplexere Stromverteilungen lässt sich die Homogenität noch verbessern
und somit das FOV vergrößern.
Die MRI-Bildgebung wurde in dieser Arbeit für eine Dimension implementiert und
soll in fortführenden Arbeiten auf 2D und 3D ausgedehnt werden. Letztendlich
soll anhand eines MRI-Bildes die Partikelverteilung des MPI-Tracers in Lebewesen
deren Anatomie zugeordnet werden. In [76][77][78] sind die ersten präklinischen
Anwendungen mit dem TWMPI-Scanner durchgeführt worden. Diese Anwendungen
erlangen eine höhere Aussagekraft durch die zusätzlichen Informationen eines
TWMPI-MRI-Hybridscanners.
In weiteren Arbeiten sollte zusätzlich die Größe des FOVs für das MRI erweitert
werden. Außerdem macht es Sinn, einen elektronischen Schalter zum Umschalten
des dLGAs zwischen MRI und MPI zu realisieren.
Die nächste Version des Hybridscanners könnte beispielsweise ein komplett neu
gestaltetes dLGA enthalten, in dem jede Segmentspule in radialer Richtung einmal
geteilt wird und dadurch in eine innere und eine äußere Spule zerlegt wird. Für
das MRI werden die beiden Spulenteile gegen geschaltet, um ein homogenes Feld
in radialer Richtung zu erhalten. Für das TWMPI werden die Spulenteile gleichgeschaltet,
um einen möglichst starken Feldgradienten zu erreichen.
In dieser Arbeit wurde für die nächste Version eines TWMPI-MRI-Hybridscanners
viel Wissen generiert, das äußerst hilfreich für das neue Design sein wird. Anhand
der Vermessung des B0-Feldes hat sich gezeigt, dass die simulierten Magnetfelder
gut mit den gemessenen Magnetfeldern übereinstimmen. Außerdem wurde viel
gelernt über die Kombination von TWMPI mit MRI.
The contact of hot melt with liquid water - called Molten Fuel Coolant Interaction (MFCI) - can result in vivid explosions. Such explosions can occur in different scenarios: in steel or powerplants but also in volcanoes. Because of the possible dramatic consequences of such explosions an investigation of the explosion process is necessary.
Fundamental basics of this process are already discovered and explained, such as the frame conditions for these explosions. It has been shown that energy transfer during an MFCI-process can be very high because of the transfer of thermal energy caused by positive feedback mechanisms.
Up to now the influence of several varying parameters on the energy transfer and the explosions is not yet investigated sufficiently. An important parameter is the melt temperature, because the amount of possibly transferable energy depends on it. The investigation of this influence is the main aim of this work. Therefor metallic tin melt was used, because of its nearly constant thermal material properties in a wide temperature range. With tin melt research in the temperature range from 400 °C up to 1000 °C are
possible.
One important result is the lower temperature limit for vapor film stability in the experiments. For low melt temperatures up to about 600 °C the vapor film is so unstable that it already can collapse before the mechanical trigger. As expected the transferred thermal energy all in all increases with higher temperatures. Although this effect sometimes is superposed by other influences such as the premix of melt and water, the result is confirmed after a consequent filtering of the remaining influences. This trend is not only recognizable in the amount of transferred energy, but also in the fragmentation of melt or the vaporizing water. But also the other influences on MFCI-explosions showed interesting results in the frame of this work. To perform the experiments the installation and preparation of the experimental Setup in the laboratory were necessary.
In order to compare the results to volcanism and to get a better investigation of the brittle fragmentation
of melt additional runs with magmatic melt were made. In the results the thermal power during energy transfer could be estimated. Furthermore the model of “cooling fragments “ could be usefully applied.
Efficient and fast on-demand single photon sources have been sought after as critical components of quantum information science. We report an efficient and tunable single photon source based on an InAs quantum dot (QD) embedded in a photonic crystal cavity coupled with a highly curved \(\mu\)-fibre. Exploiting evanescent coupling between the \(\mu\)-fibre and the cavity, a high collection efficiency of 23% and Purcell-enhanced spontaneous emissions are observed. In our scheme, the spectral position of a resonance can be tuned by as much as 1.5 nm by adjusting the contact position of the \(\mu\)-fibre, which increases the spectral coupling probability between the QD and the cavity mode. Taking advantage of the high photon count rate and the tunability, the collection efficiencies and the decay rates are systematically investigated as a function of the QD-cavity detuning.
The charge carrier lifetime is an important parameter in solar cells as it defines, together with the mobility, the diffusion length of the charge carriers, thus directly determining the optimal active layer thickness of a device. Herein, we report on charge carrier lifetime values in bromine doped planar methylammonium lead iodide (MAPbI\(_3\)) solar cells determined by transient photovoltage. The corresponding charge carrier density has been derived from charge carrier extraction. We found increased lifetime values in solar cells incorporating bromine compared to pure MAPbI\(_3\) by a factor of ~2.75 at an illumination intensity corresponding to 1 sun. In the bromine containing solar cells we additionally observe an anomalously high value of extracted charge, which we deduce to originate from mobile ions.
The effect of interface intermixing in W-design GaSb/AlSb/InAs/Ga\(_{0.665}\)In\(_{0.335}\)As\(_x\)Sb\(_{1-x}\)/InAs/AlSb/GaSb quantum wells (QWs) has been investigated by means of optical spectroscopy supported by structural data and by band structure calculations. The fundamental optical transition has been detected at room temperature through photoluminescence and photoreflectance measurements and appeared to be blueshifted with increasing As content of the GaInAsSb layer, in contrast to the energy-gap-driven shifts calculated for an ideally rectangular QW profile. The arsenic incorporation into the hole-confining layer affects the material and optical structure also altering the InAs/GaInAsSb interfaces and their degree of intermixing. Based on the analysis of cross-sectional transmission electron microscopy images and energy-dispersive X-ray spectroscopy, we could deduce the composition distribution across the QW layers and hence simulate more realistic confinement potential profiles. For such smoothed interfaces that indicate As-enhanced intermixing, the energy level calculations have been able to reproduce the experimentally obtained trend.