Raumfahrttechnik und Extraterrestrik
Advances in Space Technology and Exploration
ISSN 2747-9374
ISSN 2747-9374
Refine
Has Fulltext
- yes (6)
Is part of the Bibliography
- yes (6)
Document Type
- Report (2)
- Working Paper (2)
- Bachelor Thesis (1)
- Doctoral Thesis (1)
Keywords
- CubeSat (2)
- Venus (2)
- landing (2)
- Autorotation (1)
- Balloon (1)
- Extraterrestrische Forschung (1)
- Kleinsatellit (1)
- Kleinsatellitenmissionen (1)
- Landung (1)
- Lightning (1)
Institute
6
In this thesis, a model of the dynamics during the landing phase of an interplanetary lander mission is developed in a 3 DOF approach with the focus lying on landing by propulsive means. Based on this model, a MATLAB simulation was developed with the goal of enabling an estimation of the performance and especially the required fuel amount of a propulsive landing system on Venus. This landing system is modeled to be able to control its descent using thrusters and to perform a stable landing at a specified target location. Using this simulation, the planetary environments of Mars and Venus can be simulated and the impact of wind, atmospheric density and gravity as well as of using different thrusters on the fuel consumption and landing abilities of the simulated landing system can be investigated. The comparability of these results with the behavior of real landing systems is validated in this thesis by simulating the Powered Descent Phase of the Mars 2020 mission and comparing the results to the data the Mars 2020 descent stage has collected during this phase of its landing. Further, based on the simulation, the minimal necessary fuel amount for a successful landing on Venus has been determined for different scenarios. The simulation along with these results are a contribution to the research of this thesis’s supervisor Clemens Riegler, M.Sc., who will use them for a comparison of different types of landing systems in the context of his doctoral thesis.
5
Dieser Kurzbericht beleuchtet die Einsatzmöglichkeiten von Kleinsatelliten in der extraterrestrischen Forschung und zeigt auf welche technologischen Herausforderungen sich bei ihrem Einsatz ergeben. Die präsentierten Ergebnisse sind Teil der SATEX Untersuchung (FKZ 50OO2222). In diesem Dokument werden zunächst die allgemeinen Einsatzmöglichkeiten von Kleinsatelliten in der Extraterrestrik anhand ausgewählter Beispielmissionen beleuchtet. Daraufhin erfolgt die Erörterung spezifischer technischer Herausforderungen und Umweltbedingungen bei cislunaren und interplanetaren Kleinsatellitenmissionen, gefolgt von einer kurzen Präsentation von Nutzerwünsche aus Deutschland für Missionen zur Erforschung des Weltraums. Zum Abschluss werden zehn konkrete, im Rahmen der Untersuchung ermittelte, Missionsideen vorgestellt und bewertet. Schließlich erfolgt die Zusammenfassung der wichtigsten Erkenntnisse und Empfehlungen.
4
Venus Research Station
(2023)
Because of the extreme conditions in the atmosphere, Venus has been less explored than for example Mars. Only a few probes have been able to survive on the surface for very short periods in the past and have sent data. The atmosphere is also far from being fully explored. It could even be that building blocks of life can be found in more moderate layers of the planet’s atmosphere. It can therefore be assumed that the planet Venus will increasingly become a focus of exploration. One way to collect significantly more data in situ is to build and operate an atmospheric research station over an extended period of time. This could carry out measurements at different positions and at different times and thus significantly expand our knowledge of the planet. In this work, the design of a Venus Research Station floating within the Venusian atmosphere is presented, which is complemented by the design of deployable atmospheric Scouts. The design of these components is done on a conceptual basis.
3
Lightning has fascinated humanity since the beginning of our existence. Different types of lightning like sprites and blue jets were discovered, and many more are theorized. However, it is very likely that these phenomena are not exclusive to our home planet. Venus’s dense and active atmosphere is a place where lightning is to be expected. Missions like Venera, Pioneer, and Galileo have carried instruments to measure electromagnetic activity. These measurements have indeed delivered results. However, these results are not clear. They could be explained by other effects like cosmic rays, plasma noise, or spacecraft noise. Furthermore, these lightning seem different from those we know from our home planet. In order to tackle these issues, a different approach to measurement is proposed. When multiple devices in different spacecraft or locations can measure the same atmospheric discharge, most other explanations become increasingly less likely. Thus, the suggested instrument and method of VELEX incorporates multiple spacecraft. With this approach, the question about the existence of lightning on Venus could be settled.
2
The first step towards aerial planetary exploration has been made. Ingenuity shows extremely promising results, and new missions are already underway. Rotorcraft are capable of flight. This capability could be utilized to support the last stages of Entry, Descent, and Landing. Thus, mass and complexity could be scaled down.
Autorotation is one method of descent. It describes unpowered descent and landing, typically performed by helicopters in case of an engine failure. MAPLE is suggested to test these procedures and understand autorotation on other planets. In this series of experiments, the Ingenuity helicopter is utilized. Ingenuity would autorotate a ”mid-air-landing” before continuing with normal flight. Ultimately, the collected data shall help to understand autorotation on Mars and its utilization for interplanetary exploration.
1
Die Raumfahrt ist eine der konservativsten Industriebranchen. Neue Entwicklungen von Komponenten und Systemen beruhen auf existierenden Standards und eigene Erfahrungen der Entwickler. Die Systeme sollen in einem vorgegebenen engen Zeitrahmen projektiert, in sehr kleiner Stückzahl gefertigt und schließlich aufwendig qualifiziert werden. Erfahrungsgemäß reicht die Zeit für Entwicklungsiterationen und weitgehende Perfektionierung des Systems oft nicht aus. Fertige Sensoren, Subsysteme und Systeme sind Unikate, die nur für eine bestimme Funktion und in manchen Fällen sogar nur für bestimmte Missionen konzipiert sind. Eine Neuentwicklung solcher Komponenten ist extrem teuer und risikobehaftet. Deswegen werden flugerprobte Systeme ohne Änderungen und Optimierung mehrere Jahre eingesetzt, ohne Technologiefortschritte zu berücksichtigen.
Aufgrund des enormen finanziellen Aufwandes und der Trägheit ist die konventionelle Vorgehensweise in der Entwicklung nicht direkt auf Kleinsatelliten übertragbar. Eine dynamische Entwicklung im Low Cost Bereich benötigt eine universale und für unterschiedliche Anwendungsbereiche leicht modifizierbare Strategie. Diese Strategie soll nicht nur flexibel sein, sondern auch zu einer möglichst optimalen und effizienten Hardwarelösung führen.
Diese Arbeit stellt ein Software-Tool für eine zeit- und kosteneffiziente Entwicklung von Sternsensoren für Kleinsatelliten vor. Um eine maximale Leistung des Komplettsystems zu erreichen, soll der Sensor die Anforderungen und Randbedingungen vorgegebener Anwendungen erfüllen und darüber hinaus für diese Anwendungen optimiert sein. Wegen der komplexen Zusammenhänge zwischen den Parametern optischer Sensorsysteme ist keine
„straightforward" Lösung des Problems möglich. Nur durch den Einsatz computerbasierter Optimierungsverfahren kann schnell und effizient ein bestmögliches Systemkonzept für die gegebenen Randbedingungen ausgearbeitet werden.