• Treffer 1 von 1
Zurück zur Trefferliste

Cortical Neurons form a Functional Neuronal Network in a 3D Printed Reinforced Matrix

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-215400
  • Impairments in neuronal circuits underly multiple neurodevelopmental and neurodegenerative disorders. 3D cell culture models enhance the complexity of in vitro systems and provide a microenvironment closer to the native situation than with 2D cultures. Such novel model systems will allow the assessment of neuronal network formation and their dysfunction under disease conditions. Here, mouse cortical neurons are cultured from embryonic day E17 within in a fiber‐reinforced matrix. A soft Matrigel with a shear modulus of 31 ± 5.6 Pa is reinforcedImpairments in neuronal circuits underly multiple neurodevelopmental and neurodegenerative disorders. 3D cell culture models enhance the complexity of in vitro systems and provide a microenvironment closer to the native situation than with 2D cultures. Such novel model systems will allow the assessment of neuronal network formation and their dysfunction under disease conditions. Here, mouse cortical neurons are cultured from embryonic day E17 within in a fiber‐reinforced matrix. A soft Matrigel with a shear modulus of 31 ± 5.6 Pa is reinforced with scaffolds created by melt electrowriting, improving its mechanical properties and facilitating the handling. Cortical neurons display enhance cell viability and the neuronal network maturation in 3D, estimated by staining of dendrites and synapses over 21 days in vitro, is faster in 3D compared to 2D cultures. Using functional readouts with electrophysiological recordings, different firing patterns of action potentials are observed, which are absent in the presence of the sodium channel blocker, tetrodotoxin. Voltage‐gated sodium currents display a current–voltage relationship with a maximum peak current at −25 mV. With its high customizability in terms of scaffold reinforcement and soft matrix formulation, this approach represents a new tool to study neuronal networks in 3D under normal and, potentially, disease conditions.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Dieter Janzen, Ezgi Bakirci, Annalena Wieland, Corinna Martin, Paul D. Dalton, Carmen Villmann
URN:urn:nbn:de:bvb:20-opus-215400
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Medizinische Fakultät / Institut für Klinische Neurobiologie
Medizinische Fakultät / Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Advanced Healthcare Materials
Erscheinungsjahr:2020
Band / Jahrgang:9
Heft / Ausgabe:9
Aufsatznummer:1901630
Originalveröffentlichung / Quelle:Advanced Healthcare Materials 2020, 9(9):1901630. DOI: 10.1002/adhm.201901630
DOI:https://doi.org/10.1002/adhm.201901630
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):3D electrophysiology; 3D neuronal networks; cortical neurons; melt electrowriting
Datum der Freischaltung:01.07.2021
Lizenz (Deutsch):License LogoCC BY-NC: Creative-Commons-Lizenz: Namensnennung, Nicht kommerziell 4.0 International