• Treffer 8 von 19
Zurück zur Trefferliste

Pathogens and Elicitors Induce Local and Systemic Changes in Triacylglycerol Metabolism in Roots and in Leaves of Arabidopsis thaliana

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-246198
  • Simple Summary Abiotic and biotic stress conditions result in profound changes in plant lipid metabolism. Vegetable oil consists of triacylglycerols, which are important energy and carbon storage compounds in seeds of various plant species. These compounds are also present in vegetative tissue, and levels have been reported to increase with different abiotic stresses in leaves. This work shows that triacylglycerols accumulate in roots and in distal, non-treated leaves upon treatment with a fungal pathogen or lipopolysaccharide (a commonSimple Summary Abiotic and biotic stress conditions result in profound changes in plant lipid metabolism. Vegetable oil consists of triacylglycerols, which are important energy and carbon storage compounds in seeds of various plant species. These compounds are also present in vegetative tissue, and levels have been reported to increase with different abiotic stresses in leaves. This work shows that triacylglycerols accumulate in roots and in distal, non-treated leaves upon treatment with a fungal pathogen or lipopolysaccharide (a common bacterial-derived elicitor in animals and plants). Treatment of leaves with a bacterial pathogen or a bacterial effector molecule results in triacylglycerol accumulation in leaves, but not systemically in roots. These results suggest that elicitor molecules are sufficient to induce an increase in triacylglycerol levels, and that unidirectional long-distance signaling from roots to leaves is involved in pathogen and elicitor-induced triacylglycerol accumulation. Abstract Interaction of plants with the environment affects lipid metabolism. Changes in the pattern of phospholipids have been reported in response to abiotic stress, particularly accumulation of triacylglycerols, but less is known about the alteration of lipid metabolism in response to biotic stress and leaves have been more intensively studied than roots. This work investigates the levels of lipids in roots as well as leaves of Arabidopsis thaliana in response to pathogens and elicitor molecules by UPLC-TOF-MS. Triacylglycerol levels increased in roots and systemically in leaves upon treatment of roots with the fungus Verticillium longisporum. Upon spray infection of leaves with the bacterial pathogen Pseudomonas syringae, triacylglycerols accumulated locally in leaves but not in roots. Treatment of roots with a bacterial lipopolysaccharide elicitor induced a strong triacylglycerol accumulation in roots and leaves. Induction of the expression of the bacterial effector AVRRPM1 resulted in a dramatic increase of triacylglycerol levels in leaves, indicating that elicitor molecules are sufficient to induce accumulation of triacylglycerols. These results give insight into local and systemic changes to lipid metabolism in roots and leaves in response to biotic stresses.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Sebastian Schieferle, Beeke Tappe, Pamela Korte, Martin J. Mueller, Susanne Berger
URN:urn:nbn:de:bvb:20-opus-246198
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Biology
ISSN:2079-7737
Erscheinungsjahr:2021
Band / Jahrgang:10
Heft / Ausgabe:9
Aufsatznummer:920
Originalveröffentlichung / Quelle:Biology 2021, 10(9), 920; https://doi.org/10.3390/biology10090920
DOI:https://doi.org/10.3390/biology10090920
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 58 Pflanzen (Botanik) / 580 Pflanzen (Botanik)
Freie Schlagwort(e):effectors; elicitors; membrane remodeling; pathogens; triacylglycerols
Datum der Freischaltung:18.01.2022
Datum der Erstveröffentlichung:16.09.2021
Open-Access-Publikationsfonds / Förderzeitraum 2021
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International