• search hit 2 of 3
Back to Result List

Reaktivität von niedervalenten Übergangsmetallkomplexen gegenüber Lewis-Säuren

Reactivity of low-valent transition metal complexes towards Lewis acids

Please always quote using this URN: urn:nbn:de:bvb:20-opus-56117
  • Im Rahmen der vorliegenden Arbeit wurde die Reaktivität von niedervalenten Übergangsmetallkomplexen gegenüber Lewis-Säuren systematisch untersucht. Dabei konnten zwei unterschiedliche Reaktionsmuster aufgedeckt werden. Einerseits wurden Produkte der oxidativen Addition isoliert, andererseits wurde die Bildung von Lewis-Säure-Base-Addukten beobachtet. Die Umsetzung von [Pd(PCy3)2] mit den Bromboranen BrBCat’ und Br2BPip resultiert in den Palladiumborylkomplexen trans [(Cy3P)2Pd(Br)(BCat’)] und trans [(Cy3P)2Pd(Br){B(Br)Pip}]. Der weitere FokusIm Rahmen der vorliegenden Arbeit wurde die Reaktivität von niedervalenten Übergangsmetallkomplexen gegenüber Lewis-Säuren systematisch untersucht. Dabei konnten zwei unterschiedliche Reaktionsmuster aufgedeckt werden. Einerseits wurden Produkte der oxidativen Addition isoliert, andererseits wurde die Bildung von Lewis-Säure-Base-Addukten beobachtet. Die Umsetzung von [Pd(PCy3)2] mit den Bromboranen BrBCat’ und Br2BPip resultiert in den Palladiumborylkomplexen trans [(Cy3P)2Pd(Br)(BCat’)] und trans [(Cy3P)2Pd(Br){B(Br)Pip}]. Der weitere Fokus lag auf den vielversprechenden niedervalenten Platinverbindungen und der Variation der Lewis-Säure. Die Umsetzung von [Pt(PCy3)2] mit den Bismuthalogeniden BiCl3 und BiBr3 lieferte die jeweiligen Produkte der oxidativen Addition. Von Ersterem konnten Kristalle erhalten werden, wobei der annähernd quadratisch-planare Komplex trans [(Cy3P)2Pt(Cl)(BiCl2)] die erste oxidative Addition eines Bismuthalogenids an ein niedervalentes Übergangsmetallzentrum repräsentiert. Der relativ einfache Zugang zu Systemen mit neuartigen Bindungsmodi ausgehend von Platin(0)komplexen war jedoch nicht nur auf Lewis-Säuren des p-Blocks beschränkt. Die Übertragung der Reaktivitätauf das stark Lewis-saure s-Block-Halogenid BeCl2 ermöglichte die Isolierung des Addukts [(Cy3P)2Pt–BeCl2]. Eine besondere Eigenschaft dieser Verbindung ist die Möglichkeit einer weiterführenden Substitution am Berylliumzentrum. So konnten durch Umsetzung mit Mesityllithium bzw. Methyllithium die entsprechenden heteroleptischen Verbindungen [(Cy3P)2Pt–Be(Cl)Mes] und [(Cy3P)2Pt–Be(Cl)Me] erhalten werden. Die analoge Umsetzung von [Pd(PCy3)2] mit BeCl2 resultierte nicht in der Bildung eines Addukts. Stattdessen bildet sich neben elementarem Palladium die dinukleare Verbindung [Be2Cl2(µ-Cl)2(PCy3)2]. Jedes Berylliumzentrum ist von einem verbrückenden und einem terminalen Chlorsubstituenten sowie einem Phosphanliganden annähernd tetraedrisch umgeben. Die Umsetzung von [Pt(PCy3)2] mit Aluminiumhalogeniden in Toluol bzw. Benzol lieferte die unerwarteten Addukte [(Cy3P)2Pt–AlX3] (X = Cl, Br, I). [(Cy3P)2Pt–AlCl3] und [(Cy3P)2Pt–AlBr3] konnten hierbei strukturell charakterisiert werden. Beide Spezies zeigen eine außergewöhnliche T-förmige Struktur. Eine völlig andere Reaktivität wurde bei der analogen Reaktion von AlCl3 bzw. AlBr3 mit [Pt(PCy3)2] in THF beobachtet. Hier fand eine Ringöffnung statt und es resultierten die dimeren Produkte [(Cl)(Cy3P)2Pt(C4H8O)AlCl2∙thf]2 und [(Br)(Cy3P)2Pt(C4H8O)AlBr2∙thf]2. Ein Vergleich der Kristallstrukturen zeigt eine unterschiedliche Geometrie im Festkörper. Eine weitere Variation der Addukt-Systeme war nicht nur durch das Lösemittel, sondern auch die Anzahl der Phospanliganden möglich. Mit [Pt(PEt3)3] als Ausgangsmaterial konnten durch die Umsetzung mit AlCl3 und AlI3 in Benzol bzw. Toluol ebenfalls die entsprechenden Addukte dargestellt und strukturell charakterisiert werden. [(Et3P)3Pt–AlCl3] und [(Et3P)3Pt–AlI3] zeigen eine ungewöhnliche Geometrie am Platinzentrum, die zwischen quadratisch-planar und tetraedrisch liegt. Analoge Studien zu Galliumhalogeniden GaX3 (X = Cl, Br, I) lieferten überraschende Ergebnisse. Die Umsetzung von [Pt(PCy3)2] mit GaCl3 führte zum Platin-Gallium-Addukt [(Cy3P)2Pt–GaCl3], wohingegen die Reaktionen mit GaBr3 bzw. GaI3 zur Bildung der entsprechenden Produkte der oxidativen Addition trans [(Cy3P)2Pt(Br)(GaBr2)] bzw. trans [(Cy3P)2Pt(I)(GaI2)] führen. Im Fall von [(Cy3P)2Pt–GaCl3] zeigt sich eine T förmige Struktur, während bei Letzteren die Geometrie am Platinzentrum annähernd quadratisch-planar ist. Da die Umsetzungen von niedervalenten Übergangsmetallverbindungen mit p- und s Block-Metallhalogeniden erfolgreich war, wurde die Übertragbarkeit auf entsprechende d Block-Verbindungen untersucht. Die Umsetzung von [Pt(PCy3)2] mit ZrCl4 in Benzol resultierte in dem Platin-Zirkonium-Addukt [(Cy3P)2Pt–ZrCl4]. Dieses repräsentiert das erste Beispiel einer dativen Bindung zwischen einem frühen und einem späten Übergangsmetall. Neben den Addukten mit metallhaltigen Lewis-Säuren konnten auch die Platincarbonylkomplexe [(Cy3P)2Pt(CO)] und [(Cy3P)2Pt(CO)2] ausgehend von [Pt(PCy3)2] realisiert werden. Der Monocarbonylkomplex [(Cy3P)2Pt(CO)] ist hierbei lediglich durch photolytischen Transfer einer Carbonyleinheit von [Cp*Ir(CO)2] darstellbar. [(Cy3P)2Pt(CO)] erwies sich bei Raumtemperatur als stabil und nimmt im Festkörper eine trigonal-planare Struktur am Platinzentrum ein. Der Dicarbonylkomplex [(Cy3P)2Pt(CO)2] konnte durch direkte Behandlung von [Pt(PCy3)2] mit Kohlenstoffmonoxid erhalten werden und ist nur bei Temperaturen unterhalb von –20 °C haltbar. Beide Verbindungen sind seltene Vertreter von Platin-Monocarbonyl- bzw. Platin-Dicarbonylkomplexen.show moreshow less
  • Within the scope of the presented thesis, the reactivity of low-valent transition metal complexes towards Lewis acids was systematically investigated. In doing so, two different reaction patterns were observed: (i) oxidative addition reactions and (ii) formation of Lewis acid base adducts. The reaction of [Pd(PCy3)2] with the bromoboranes BrBCat’ and Br2BPip resulted in the corresponding palladium boryl complexes trans [(Cy3P)2Pd(Br)(BCat’)] and trans [(Cy3P)2Pd(Br){B(Br)Pip}]. So far, the most promising results were obtained with platinumWithin the scope of the presented thesis, the reactivity of low-valent transition metal complexes towards Lewis acids was systematically investigated. In doing so, two different reaction patterns were observed: (i) oxidative addition reactions and (ii) formation of Lewis acid base adducts. The reaction of [Pd(PCy3)2] with the bromoboranes BrBCat’ and Br2BPip resulted in the corresponding palladium boryl complexes trans [(Cy3P)2Pd(Br)(BCat’)] and trans [(Cy3P)2Pd(Br){B(Br)Pip}]. So far, the most promising results were obtained with platinum species. Therefore, we focused on this class of complexes and modified the Lewis acid. The reaction of [Pt(PCy3)2] with the bismuth halides BiCl3 and BiBr3 resulted in the unprecedented oxidative addition to afford complexes trans [(Cy3P)2Pd(Br)(BCat’)] and trans [(Cy3P)2Pd(Br){B(Br)Pip}]. Crystals of the nearly square-planar complex trans [(Cy3P)2Pt(Cl)(BiCl2)] were obtained representing the first oxidative addition of a bismuth halide to a low-valent transition metal center. Facile access to novel bonding modes based on platinum(0) complexes was not sought solely with p-block metals. Extension of this concept to s-block halides, especially the strong Lewis acid BeCl2, resulted in the adduct [(Cy3P)2Pt–BeCl2]. A special feature of this species is given by the possibility of a further functionalization at the beryllium center. Thus, the reaction with mesityllithium and methyllithium afforded the corresponding heteroleptic compounds [(Cy3P)2Pt–Be(Cl)Mes] and [(Cy3P)2Pt–Be(Cl)Me], respectively. By contrast, the reaction of [Pd(PCy3)2] with BeCl2 did not result in an adduct formation. Instead, elemental palladium precipitated and the dinuclear compound [Be2Cl2(µ-Cl)2(PCy3)2] was formed. This structural motif is astonishingly rare, with each beryllium center surrounded nearly tetrahedral by a terminal and a bridging chloride substituent in addition to a phosphine ligand. Reaction of [Pt(PCy3)2] with the aluminium halides AlX3 (X = Cl, Br, I), yielded the unexpected adducts [(Cy3P)2Pt–AlX3] (X = Cl, Br, I) in toluene and benzene, respectively. Both [(Cy3P)2Pt–AlCl3] and [(Cy3P)2Pt–AlBr3] were studied by X-Ray diffraction, which reveal an unusual T-shaped geometry at the platinum centers. A different reactivity was observed when the analogous reaction of [Pt(PCy3)2] with AlCl3 or AlBr3 was carried out in tetrahydrofuran. The solvent molecule was ring-opened and the dimeric products [(Cl)(Cy3P)2Pt(C4H8O)AlCl2∙thf]2 and [(Br)(Cy3P)2Pt(C4H8O)AlBr2∙thf]2 were obtained. An additional variation of the adduct systems is not only possible by solvent exchange but also by the number of phoshine ligands. The reaction of [Pt(PEt3)3] with AlCl3 and AlI3, respectively, were also successful, which was proven by structural characterization of the respective adducts [(Et3P)3Pt–AlCl3] and [(Et3P)3Pt–AlI3]. The geometry at the platinum center is in between square-planar and tetrahedral. Related studies with the gallium halides GaX3 (X = Cl, Br, I) showed surprising results. The reaction of [Pt(PCy3)2] and GaCl3 yielded the platinum-gallane adduct [(Cy3P)2Pt–GaCl3]. In contrast, the reaction of GaBr3 and GaI3 display a different reactivity and the products of the oxidative addition trans [(Cy3P)2Pt(Br)(GaBr2)] and trans [(Cy3P)2Pt(I)(GaI2)] were formed. These results were detected by NMR-spectroscopy and supported by additional XRay diffraction. As all previous investigations on low-valent transition metal complexes towards p- and s-block metal halides were successful, the research was further extended to related d-block compounds. The reaction of [Pt(PCy3)2] with ZrCl4 in benzene resulted in the platinum–zirconium adduct [(Cy3P)2Pt–ZrCl4]. The latter represents the first example of an early-late heterobimetallic complex with an unsupported dative bond. Attempts to generate a platinum-f-block adduct have met with no success as yet. Further investigations showed that novel adducts derived from [Pt(PCy3)2] are not limited to metal-only complexes. The platinum carbonyl complexes [(Cy3P)2Pt(CO)] and [(Cy3P)2Pt(CO)2] were synthesized via two different reaction pathways.The monocarbonyl complex [(Cy3P)2Pt(CO)] required a photolytic transfer of one carbonyl moiety from [Cp*Ir(CO)2]. The resulting orange crystals are stable at room temperature and show a trigonal planar geometry at the platinum center. The dicarbonyl complex [(Cy3P)2Pt(CO)2] could be obtained by direct treatment of [Pt(PCy3)2] with carbon monoxide but decomposes at temperatures above –20 °C. The crystal structure shows a distorted tetrahedral geometry at the platinum center with slightly elongated platinum-carbon bonds of 1.909 Å at an average in comparison to [(Cy3P)2Pt(CO)] (1.885(12) Å). [(Cy3P)2Pt(CO)] is the first example of this class of compounds with unbridged phosphine ligands. Both compounds are rare examples of platinum(0) monocarbonyl and platinum(0) dicarbonyl complexes, respectively.show moreshow less

Download full text files

Export metadata

Additional Services

Share in Twitter Search Google Scholar Statistics
Metadaten
Author: Katrin Gruß
URN:urn:nbn:de:bvb:20-opus-56117
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Anorganische Chemie
Date of final exam:2011/03/25
Language:German
Year of Completion:2011
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 540 Chemie und zugeordnete Wissenschaften
GND Keyword:Lewis-Säure; Übergangsmetallkomplexe; Koordinativ ungesättigte Verbindungen
Tag:Metallorganische Chemie; niedervalent
Lewis acid; transition metal complexes
Release Date:2011/04/28
Advisor:Prof. Holger Braunschweig
Licence (German):License LogoDeutsches Urheberrecht