540 Chemie und zugeordnete Wissenschaften
Refine
Year of publication
Document Type
- Doctoral Thesis (727)
- Journal article (635)
- Conference Proceeding (10)
- Preprint (6)
- Book article / Book chapter (5)
- Report (2)
- Review (2)
Keywords
- Organische Chemie (127)
- Anorganische Chemie (124)
- Chemie (71)
- Physiologische Chemie (45)
- Bor (25)
- Silicium (25)
- Chemische Synthese (23)
- fluorescence (19)
- Polymere (18)
- Schwertkärpfling (18)
Institute
- Institut für Anorganische Chemie (390)
- Institut für Organische Chemie (346)
- Institut für Pharmazie und Lebensmittelchemie (287)
- Institut für Physikalische und Theoretische Chemie (120)
- Theodor-Boveri-Institut für Biowissenschaften (85)
- Institut für Funktionsmaterialien und Biofabrikation (70)
- Lehrstuhl für Biochemie (35)
- Fakultät für Chemie und Pharmazie (29)
- Abteilung für Funktionswerkstoffe der Medizin und der Zahnheilkunde (24)
- Institut für Pharmakologie und Toxikologie (19)
Sonstige beteiligte Institutionen
- Fraunhofer-Institut für Silicatforschung ISC (4)
- Fraunhofer-Institut für Silicatforschung (2)
- ACC GmbH Analytical Clinical Concepts (1)
- Bayer AG, Research & Development, Pharmaceuticals, Investigational Toxicology (1)
- Bayerisches Geoinstitut, Universität Bayreuth (1)
- Center for Nanosystems Chemistry (1)
- Center for Nanosystems Chemistry (CNC), University of Würzburg (1)
- Cluster of Excellence "Multiscale Bioimaging: from Molecular Machines to Networks of Excitable Cells, Göttingen (1)
- Department of Cellular Biochemistry, University Medical Center Göttingen (1)
- Department of Cellular Biochemistry, University Medical Centre Göttingen (1)
ResearcherID
- B-1911-2015 (1)
- N-3741-2015 (1)
Highlights
• A sequential synthetic protocol affords a stacked merocyanine hetero-foldamer
• Exciton coupling leads to a band structure for panchromatic light absorption
• Ultrafast energy transfer affords the population of a highly emissive lowest state
• Fluorescence brightness increases 14-fold for panchromatic light absorption
Summary
Natural photosystems accomplish panchromatic light absorption by different chromophores that are non-covalently embedded in protein matrices and mostly lack close dye-dye interactions. In this article, we introduce a light-harvesting (LH) system established by four different merocyanine dyes that are co-facially stacked by dipole-dipole interactions and a peptide-like backbone in a folded heteromer architecture to afford a panchromatic absorption band consisting of several strongly coupled exciton states. This exciton manifold allows for ultrafast and efficient energy transport in the artificial antenna. Furthermore, due to the tight stacking of the dyes in their folded state, non-radiative processes are slowed down, thereby increasing the lifetime of the excited state and the fluorescence quantum yield from <3% for the individual dyes up to 38% for the folda-heteromer. Together with the panchromatic absorption, this leads to a substantial improvement of the fluorescence brightness upon broadband excitation in comparison with its constituent chromophores.
To reduce the ecological footprint and to increase the lifetime of lithium-ion batteries (LIBs), it is necessary to understand aging phenomena inside the cells during cycling. In this study, the positive effect of external pressure through bracing the cells on aging is investigated for automotive battery cells with more than 7000 cycles. After cycling, the aged cells are studied by using post-mortem analysis. It is shown that bracing does not affect the anode and cathode in the same manner. A lack of external pressure results in lithium plating due to contact losses on the anode. Such a loss of lithium inventory plays only a small role in the braced cells. However, the structural and morphological degradation, such as particle cracking at the cathode, is significant. Half-cell tests of aged and unaged anode samples extracted from the automotive cells confirm the post-mortem findings, where only minimal differences can be seen for the braced cell. In contrast, the aged cathodes from braced cells demonstrate substantial capacity fade in half-cell measurements as compared to the cathodes extracted from the unbraced cell. Finally, a new concept of the mechanical state of health (mechanical SOH) is introduced to correlate mechanical effects with electrode degradation.
The introduction of novel bioactive materials to manipulate living cell behavior is a crucial topic for biomedical research and tissue engineering. Biomaterials or surface patterns that boost specific cell functions can enable innovative new products in cell culture and diagnostics. This study investigates the influence of the intrinsically nano-patterned surface of nanoporous glass membranes on the behavior of mammalian cells. Three different cell lines and primary human mesenchymal stem cells (hMSCs) proliferate readily on nanoporous glass membranes with mean pore sizes between 10 and 124 nm. In both proliferation and mRNA expression experiments, L929 fibroblasts show a distinct trend toward mean pore sizes >80 nm. For primary hMSCs, excellent proliferation is observed on all nanoporous surfaces. hMSCs on samples with 17 nm pore size display increased expression of COL10, COL2A1, and SOX9, especially during the first two weeks of culture. In the upside down culture, SK-MEL-28 cells on nanoporous glass resist the gravitational force and proliferate well in contrast to cells on flat references. The effect of paclitaxel treatment of MDA-MB-321 breast cancer cells is already visible after 48 h on nanoporous membranes and strongly pronounced in comparison to reference samples, underlining the material's potential for functional drug screening.
To study the vacancy-solute-atom interaction, diluted Al-In and Al-Sn alloys with 0.005 and 0.025 at.% indium/tin cast from very high purity elements were investigated by positron annihilation spectroscopy (PAS). Therefore, the alloys have been solution heat treated at temperatures ranging from 320 to 620 °C and then rapidly quenched into ice water freezing-in most thermal vacancies. Positron annihilation lifetime (PALS) and coincidence Doppler broadening spectroscopies (CDBS) were combined to unambiguously identify vacancy-solute-atom complexes. For enabling a direct comparison to experiment, we did employ ab-initio DFT calculations of vacancy-solute-atom complexes providing relaxed atomic coordinates, which are used to calculate PAS annihilation parameters. In the as-quenched state vacancy-solute-atom pairs as well as vacancy clusters were observed in both alloys for all concentrations. During isochronal annealing vacancy clusters, formed during quenching, dissolved at about 130 °C, leaving vacancy-solute-atoms complexes as the only remaining defects. Thus, we could unambiguously identify those by a combination of PALS and CDBS with ab-initio calculations. Employing isothermal annealing the binding energy EB of vacancies to In and Sn solute atoms was determined experimentally by PALS as well as by ab-initio calculations. We find from our experiments EB = (0.20 ± 0.03) and (0.32 ± 0.10) eV for In and Sn, respectively, which is in very good agreement with our ab-initio calculations giving 0.23 and 0.26 eV, respectively. Our results clearly identified vacancy-In/Sn complexes as responsible for the retardation of vacancy migration after quenching. The vacancies bound to In and Sn solute-atoms are released around 150 °C shifting, when added to AlCu alloys as trace elements, the transport of copper atoms to higher temperatures necessary for the formation of finely distributed ″precipitates″, which efficiently strengthen this kind of alloys.
Chemical neurotransmission is the major mechanism of neuronal communication. Neurotransmitters are released from secretory organelles, the synaptic vesicles (SVs) via exocytosis into the synaptic cleft. Fusion of SVs with the presynaptic plasma membrane is balanced by endocytosis, thus maintaining the presynaptic membrane at steady-state levels. The protein machineries responsible for exo- and endocytosis have been extensively investigated. In contrast, less is known about the role of lipids in synaptic transmission and how the lipid composition of SVs is affected by dynamic exo-endocytotic cycling. Here we summarize the current knowledge about the composition, organization, and function of SV membrane lipids. We also cover lipid biogenesis and maintenance during the synaptic vesicle cycle.
Periodic shadowing, a concept used in spectroscopy for stray light reduction, has been implemented to improve the temporal contrast of streak camera imaging. The capabilities of this technique are first proven by imaging elastically scattered picosecond laser pulses and are further applied to fluorescence lifetime imaging, where more accurate descriptions of fluorescence decay curves were observed. This all-optical approach can be adapted to various streak camera imaging systems, resulting in a robust technique to minimize space-charge induced temporal dispersion in streak cameras while maintaining temporal coverage and spatial information.
A novel time-resolved pump–probe spectroscopic approach that enables to keep high resolution in both the time and energy domain, nanosecond excitation–picosecond ionization–picosecond infrared probe (ns–ps–ps TRIR) spectroscopy, has been applied to the trans-4-methylformanilide–water (4MetFA–W) cluster. Water migration dynamics from the CO to the NH binding site in a peptide linkage triggered by photoionization of 4MetFA–W is directly monitored by the ps time evolution of IR spectra, and the presence of an intermediate state is revealed. The time evolution is analyzed by rate equations based on a four-state model of the migration dynamics. Time constants for the initial to the intermediate and hot product and to the final product are obtained. The acceleration of the dynamics by methyl substitution and the strong contribution of intracluster vibrational energy redistribution in the termination of the solvation dynamics is suggested. This picture is well confirmed by the ab initio on-the-fly molecular dynamics simulations. Vibrational assignments of 4MetFA and 4MetFA–W in the neutral (S0 and S1) and ionic (D0) electronic states measured by ns IR dip and electron-impact IR photodissociation spectroscopy are also discussed prior to the results of time-resolved spectroscopy.
Lungfishes belong to lobe-fined fish (Sarcopterygii) that, in the Devonian period, ‘conquered’ the land and ultimately gave rise to all land vertebrates, including humans1,2,3. Here we determine the chromosome-quality genome of the Australian lungfish (Neoceratodus forsteri), which is known to have the largest genome of any animal. The vast size of this genome, which is about 14× larger than that of humans, is attributable mostly to huge intergenic regions and introns with high repeat content (around 90%), the components of which resemble those of tetrapods (comprising mainly long interspersed nuclear elements) more than they do those of ray-finned fish. The lungfish genome continues to expand independently (its transposable elements are still active), through mechanisms different to those of the enormous genomes of salamanders. The 17 fully assembled lungfish macrochromosomes maintain synteny to other vertebrate chromosomes, and all microchromosomes maintain conserved ancient homology with the ancestral vertebrate karyotype. Our phylogenomic analyses confirm previous reports that lungfish occupy a key evolutionary position as the closest living relatives to tetrapods4,5, underscoring the importance of lungfish for understanding innovations associated with terrestrialization. Lungfish preadaptations to living on land include the gain of limb-like expression in developmental genes such as hoxc13 and sall1 in their lobed fins. Increased rates of evolution and the duplication of genes associated with obligate air-breathing, such as lung surfactants and the expansion of odorant receptor gene families (which encode proteins involved in detecting airborne odours), contribute to the tetrapod-like biology of lungfishes. These findings advance our understanding of this major transition during vertebrate evolution.
Oligophenyleneethynylenes (OPEs) are prominent building blocks with exciting optical and supramolecular properties. However, their generally small spectroscopic changes upon aggregation make the analysis of their self-assembly challenging, especially in the absence of additional hydrogen bonds. Herein, by investigating a series of OPEs of increasing size, we have unravelled the role of the conjugation length on the self-assembly properties of OPEs.
Additive manufacturing or 3D printing as an umbrella term for various materials processing methods has distinct advantages over many other processing methods, including the ability to generate highly complex shapes and designs. However, the performance of any produced part not only depends on the material used and its shape, but is also critically dependent on its surface properties. Important features, such as wetting or fouling, critically depend mainly on the immediate surface energy. To gain control over the surface chemistry post-processing modifications are generally necessary, since it′s not a feature of additive manufacturing. Here, we report on the use of initiator and catalyst-free photografting and photopolymerization for the hydrophilic modification of microfiber scaffolds obtained from hydrophobic medical-grade poly(ε-caprolactone) via melt-electrowriting. Contact angle measurements and Raman spectroscopy confirms the formation of a more hydrophilic coating of poly(2-hydroxyethyl methacrylate). Apart from surface modification, we also observe bulk polymerization, which is expected for this method, and currently limits the controllability of this procedure.