• Treffer 1 von 1
Zurück zur Trefferliste

Multimodal brain signal complexity predicts human intelligence

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-312949
  • Spontaneous brain activity builds the foundation for human cognitive processing during external demands. Neuroimaging studies based on functional magnetic resonance imaging (fMRI) identified specific characteristics of spontaneous (intrinsic) brain dynamics to be associated with individual differences in general cognitive ability, i.e., intelligence. However, fMRI research is inherently limited by low temporal resolution, thus, preventing conclusions about neural fluctuations within the range of milliseconds. Here, we used resting-stateSpontaneous brain activity builds the foundation for human cognitive processing during external demands. Neuroimaging studies based on functional magnetic resonance imaging (fMRI) identified specific characteristics of spontaneous (intrinsic) brain dynamics to be associated with individual differences in general cognitive ability, i.e., intelligence. However, fMRI research is inherently limited by low temporal resolution, thus, preventing conclusions about neural fluctuations within the range of milliseconds. Here, we used resting-state electroencephalographical (EEG) recordings from 144 healthy adults to test whether individual differences in intelligence (Raven’s Advanced Progressive Matrices scores) can be predicted from the complexity of temporally highly resolved intrinsic brain signals. We compared different operationalizations of brain signal complexity (multiscale entropy, Shannon entropy, Fuzzy entropy, and specific characteristics of microstates) regarding their relation to intelligence. The results indicate that associations between brain signal complexity measures and intelligence are of small effect sizes (r ∼ 0.20) and vary across different spatial and temporal scales. Specifically, higher intelligence scores were associated with lower complexity in local aspects of neural processing, and less activity in task-negative brain regions belonging to the default-mode network. Finally, we combined multiple measures of brain signal complexity to show that individual intelligence scores can be significantly predicted with a multimodal model within the sample (10-fold cross-validation) as well as in an independent sample (external replication, N = 57). In sum, our results highlight the temporal and spatial dependency of associations between intelligence and intrinsic brain dynamics, proposing multimodal approaches as promising means for future neuroscientific research on complex human traits.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Jonas A. Thiele, Aylin Richter, Kirsten Hilger
URN:urn:nbn:de:bvb:20-opus-312949
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Humanwissenschaften (Philos., Psycho., Erziehungs- u. Gesell.-Wissensch.) / Institut für Psychologie
Fakultät für Biologie / Theodor-Boveri-Institut für Biowissenschaften
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):eNeuro
Erscheinungsjahr:2023
Band / Jahrgang:10
Heft / Ausgabe:2
Aufsatznummer:ENEURO.0345-22.2022
Originalveröffentlichung / Quelle:eNeuro (2023) 10:2, ENEURO.0345-22.2022. doi:10.1523/ENEURO.0345-22.2022
DOI:https://doi.org/10.1523/ENEURO.0345-22.2022
Allgemeine fachliche Zuordnung (DDC-Klassifikation):1 Philosophie und Psychologie / 15 Psychologie / 153 Kognitive Prozesse, Intelligenz
Freie Schlagwort(e):EEG; brain signal complexity; cognitive ability; intelligence; microstates; resting-state
Datum der Freischaltung:25.04.2023
Sammlungen:Open-Access-Publikationsfonds / Förderzeitraum 2022
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International