• Treffer 1 von 1
Zurück zur Trefferliste

Random Wiring, Ganglion Cell Mosaics, and the Functional Architecture of the Visual Cortex

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-138879
  • The architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1's intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it isThe architecture of iso-orientation domains in the primary visual cortex (V1) of placental carnivores and primates apparently follows species invariant quantitative laws. Dynamical optimization models assuming that neurons coordinate their stimulus preferences throughout cortical circuits linking millions of cells specifically predict these invariants. This might indicate that V1's intrinsic connectome and its functional architecture adhere to a single optimization principle with high precision and robustness. To validate this hypothesis, it is critical to closely examine the quantitative predictions of alternative candidate theories. Random feedforward wiring within the retino-cortical pathway represents a conceptually appealing alternative to dynamical circuit optimization because random dimension-expanding projections are believed to generically exhibit computationally favorable properties for stimulus representations. Here, we ask whether the quantitative invariants of V1 architecture can be explained as a generic emergent property of random wiring. We generalize and examine the stochastic wiring model proposed by Ringach and coworkers, in which iso-orientation domains in the visual cortex arise through random feedforward connections between semi-regular mosaics of retinal ganglion cells (RGCs) and visual cortical neurons. We derive closed-form expressions for cortical receptive fields and domain layouts predicted by the model for perfectly hexagonal RGC mosaics. Including spatial disorder in the RGC positions considerably changes the domain layout properties as a function of disorder parameters such as position scatter and its correlations across the retina. However, independent of parameter choice, we find that the model predictions substantially deviate from the layout laws of iso-orientation domains observed experimentally. Considering random wiring with the currently most realistic model of RGC mosaic layouts, a pairwise interacting point process, the predicted layouts remain distinct from experimental observations and resemble Gaussian random fields. We conclude that V1 layout invariants are specific quantitative signatures of visual cortical optimization, which cannot be explained by generic random feedforward-wiring models.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Manuel Schottdorf, Wolfgang Keil, David Coppola, Leonard E. White, Fred Wolf
URN:urn:nbn:de:bvb:20-opus-138879
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Institut für Theoretische Physik und Astrophysik
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):PLoS Computational Biology
Erscheinungsjahr:2015
Band / Jahrgang:11
Heft / Ausgabe:11
Seitenangabe:e1004602
Originalveröffentlichung / Quelle:PLoS Computational Biology 11(11): e1004602. doi:10.1371/journal.pcbi.1004602
DOI:https://doi.org/10.1371/journal.pcbi.1004602
Allgemeine fachliche Zuordnung (DDC-Klassifikation):5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 570 Biowissenschaften; Biologie
Freie Schlagwort(e):K-PG radiation; ancestor; cortical magnification factor; direction selectivity; lateral geniculate-nucleus; monkey striate cortex; ocular dominance columns; orientation columns; placental mammal; simple receptive-fields; tree shrew
Datum der Freischaltung:03.11.2016
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung