• Treffer 1 von 2
Zurück zur Trefferliste

Single quantum emitter Dicke enhancement

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-261459
  • Coupling N identical emitters to the same field mode is a well-established method to enhance light-matter interaction. However, the resulting √N boost of the coupling strength comes at the cost of a “linearized” (effectively semiclassical) dynamics. Here, we instead demonstrate a new approach for enhancing the coupling constant of a single quantum emitter, while retaining the nonlinear character of the light-matter interaction. We consider a single quantum emitter with N nearly degenerate transitions that are collectively coupled to the sameCoupling N identical emitters to the same field mode is a well-established method to enhance light-matter interaction. However, the resulting √N boost of the coupling strength comes at the cost of a “linearized” (effectively semiclassical) dynamics. Here, we instead demonstrate a new approach for enhancing the coupling constant of a single quantum emitter, while retaining the nonlinear character of the light-matter interaction. We consider a single quantum emitter with N nearly degenerate transitions that are collectively coupled to the same field mode. We show that in such conditions an effective Jaynes-Cummings model emerges with a boosted coupling constant of order √N. The validity and consequences of our general conclusions are analytically demonstrated for the instructive case N=2. We further observe that our system can closely match the spectral line shapes and photon autocorrelation functions typical of Jaynes-Cummings physics, proving that quantum optical nonlinearities are retained. Our findings match up very well with recent broadband plasmonic nanoresonator strong-coupling experiments and will, therefore, facilitate the control and detection of single-photon nonlinearities at ambient conditions.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Tommaso TufarelliORCiD, Daniel Friedrich, Heiko Groß, Joachim Hamm, Ortwin HessORCiD, Bert HechtORCiD
URN:urn:nbn:de:bvb:20-opus-261459
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Physik und Astronomie / Physikalisches Institut
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Physical Review Research
Erscheinungsjahr:2021
Band / Jahrgang:3
Aufsatznummer:033103
Originalveröffentlichung / Quelle:Physical Review Research (2021) 3:033103. ttps://doi.org/10.1103/PhysRevResearch.3.033103
DOI:https://doi.org/10.1103/PhysRevResearch.3.033103
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 61 Medizin und Gesundheit / 610 Medizin und Gesundheit
Freie Schlagwort(e):Cavity quantum electrodynamics; Collective effects in quantum optics; Quantum optics with artificial atoms; Superradiance & subradiance
Datum der Freischaltung:05.05.2022
Sammlungen:Open-Access-Publikationsfonds / Förderzeitraum 2021
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International