Physikalisches Institut
Refine
Is part of the Bibliography
- yes (812)
Year of publication
Document Type
- Doctoral Thesis (413)
- Journal article (383)
- Conference Proceeding (4)
- Preprint (4)
- Master Thesis (3)
- Review (3)
- Habilitation (1)
- Other (1)
Keywords
- Molekularstrahlepitaxie (32)
- Topologischer Isolator (32)
- Hadron-Hadron scattering (experiments) (31)
- Quantenpunkt (30)
- Kernspintomografie (28)
- Parton Distributions (25)
- Photoelektronenspektroskopie (23)
- MRI (20)
- Organischer Halbleiter (20)
- NMR-Tomographie (19)
Institute
- Physikalisches Institut (812)
- Medizinische Klinik und Poliklinik I (16)
- Institut für Physikalische und Theoretische Chemie (9)
- Deutsches Zentrum für Herzinsuffizienz (DZHI) (8)
- Institut für diagnostische und interventionelle Neuroradiologie (ehem. Abteilung für Neuroradiologie) (8)
- Institut für Theoretische Physik und Astrophysik (7)
- Institut für diagnostische und interventionelle Radiologie (Institut für Röntgendiagnostik) (7)
- Rudolf-Virchow-Zentrum (6)
- Institut für Molekulare Infektionsbiologie (5)
- Institut für Organische Chemie (5)
Sonstige beteiligte Institutionen
- Wilhelm-Conrad-Röntgen-Forschungszentrum für komplexe Materialsysteme (4)
- Universitätsklinikum Würzburg (3)
- Röntgen Center for Complex Material Systems (RCCM), Am Hubland, 97074 W¨urzburg, Germany (2)
- ATLAS Collaboration (1)
- Arizona State University, Tempe, Arizona, USA (1)
- Bavarian Center for Applied Energy Research (ZAE Bayern), 97074 Würzburg, Germany (1)
- Bavarian Center for Applied Energy Research e.V. (ZAE Bayern) (1)
- Bayerisches Zentrum für Angewandte Energieforschung e.V. (1)
- Biomedizinische NMR Forschungs GmbH am Max-Planck-Institut fuer biophysikalische Chemie (1)
- CERN (1)
ResearcherID
- D-1250-2010 (1)
- N-7500-2014 (1)
Gate-tuned anomalous Hall effect driven by Rashba splitting in intermixed LaAlO3/GdTiO3/SrTiO3
(2021)
The Anomalous Hall Effect (AHE) is an important quantity in determining the properties and understanding the behaviour of the two-dimensional electron system forming at the interface of SrTiO3-based oxide heterostructures. The occurrence of AHE is often interpreted as a signature of ferromagnetism, but it is becoming more and more clear that also paramagnets may contribute to AHE. We studied the influence of magnetic ions by measuring intermixed LaAlO3/GdTiO3/SrTiO3 at temperatures below 10 K. We find that, as function of gate voltage, the system undergoes a Lifshitz transition while at the same time an onset of AHE is observed. However, we do not observe clear signs of ferromagnetism. We argue the AHE to be due to the change in Rashba spin-orbit coupling at the Lifshitz transition and conclude that also paramagnetic moments which are easily polarizable at low temperatures and high magnetic fields lead to the presence of AHE, which needs to be taken into account when extracting carrier densities and mobilities.
This paper presents a measurement of forward-forward and forward-central dijet azimuthal angular correlations and conditional yields in proton-proton (pp) and proton-lead (p + Pb) collisions as a probe of the nuclear gluon density in regions where the fraction of the average momentum per nucleon carried by the parton entering the hard scattering is low. In these regions, gluon saturation can modify the rapidly increasing parton distribution function of the gluon. The analysis utilizes 25 pb(-1) of pp data and 360 mu b(-1) of p + Pb data, both at root S-NN = 5.02 TeV, collected in 2015 and 2016, respectively, with the ATLAS detector at the Large Hadron Collider. The measurement is performed in the center-of-mass frame of the nucleon-nucleon system in the rapidity range between -4.0 and 4.0 using the two highest transverse-momentum jets in each event, with the highest transverse-momentum jet restricted to the forward rapidity range. No significant broadening of azimuthal angular correlations is observed for forward-forward or forward-central dijets in p + Pb compared to pp collisions. For forward-forward jet pairs in the proton-going direction, the ratio of conditional yields in p + Pb collisions to those in pp collisions is suppressed by approximately 20%, with no significant dependence on the transverse momentum of the dijet system. No modification of conditional yields is observed for forward-central dijets.
This paper presents the electron and photon energy calibration obtained with the ATLAS detector using about 36 fb(-1) of LHC proton-proton collision data recorded at root s = 13 TeV in 2015 and 2016. The different calibration steps applied to the data and the optimization of the reconstruction of electron and photon energies are discussed. The absolute energy scale is set using a large sample of Z boson decays into electron-positron pairs. The systematic uncertainty in the energy scale calibration varies between 0.03% to 0.2% in most of the detector acceptance for electrons with transverse momentum close to 45 GeV. For electrons with transverse momentum of 10 GeV the typical uncertainty is 0.3% to 0.8% and it varies between 0.25% and 1% for photons with transverse momentum around 60 GeV. Validations of the energy calibration with J/psi -> e(+)e(-) decays and radiative Z boson decays are also presented.
Quantitative nuclear magnetic resonance imaging (MRI) shifts more and more into the focus of clinical research. Especially determination of relaxation times without/and with contrast agents becomes the foundation of tissue characterization, e.g. in cardiac MRI for myocardial fibrosis. Techniques which assess longitudinal relaxation times rely on repetitive application of readout modules, which are interrupted by free relaxation periods, e.g. the Modified Look-Locker Inversion Recovery = MOLLI sequence. These discontinuous sequences reveal an apparent relaxation time, and, by techniques extrapolated from continuous readout sequences, a putative real T1 is determined. What is missing is a rigorous analysis of the dependence of the apparent relaxation time on its real partner, readout sequence parameters and biological parameters as heart rate. This is provided in this paper for the discontinuous balanced steady state free precession (bSSFP) and spoiled gradient echo readouts. It turns out that the apparent longitudinal relaxation rate is the time average of the relaxation rates during the readout module, and free relaxation period. Knowing the heart rate our results vice versa allow to determine the real T1 from its measured apparent partner.
Contrast and non-contrast MRI based characterization of myocardium by T1-mapping will be of paramount importance to obtain biomarkers, e.g. fibrosis, which determines the risk of heart failure patients.
T1-mapping by the standard post-processing of the modified look-locker inversion recovery (MOLLI) lacks of accuracy when trying to reduce its duration, which on the other hand, is highly desirable in patients with heart failure. The recently suggested inversion group fitting (IGF) technique, which considers more parameters for fitting, has a superior accuracy for long T1 times despite a shorter duration. However, for short T1 values, the standard method has a superior precision. A conditional fitting routine is proposed which ideally takes advantage of both algorithms.
Materials and methods
All measurements were performed on a 1.5 T clinical scanner (ACHIEVA, Philips Healthcare, The Netherlands) using a MOLLI 5(n)3(n)3 prototype with n(heart beats) being a variable waiting time between inversion experiments. Phantom experiments covered a broad range of T1 times, waiting times and heart rates. A saturation recovery experiment served as a gold standard for T1 measurement. All data were analyzed with the standard MOLLI, the IGF fit and the conditional fitting routine and the obtained T1 values were compared with the gold standard. In vivo measurements were performed in a healthy volunteer and a total of 34 patients with normal findings, dilative cardiomyopathy and amyloidosis.
Results
Theoretical analysis and phantom experiments provided a threshold value for an apparent IGF
determining processing with IGF post processing for values above, or switching to the standard technique for values below. This was validated in phantoms and patients measurements. A reduction of the waiting time to 1 instead of 3 heart beats between the inversion experiments showed reliable results. The acquisition time was reduced from 17 to 13 heart beats. The in vivo measurements showed ECV values between 25% (18–33%; SD 0.03) in the healthy, 30% (22–40%; SD 0.04) in patients with DCM and 45% (30–60%; SD 0.9) in patients with amyloidosis.
Conclusion
The adopted post-processing algorithm determines long T1 values with high accuracy and short T1 values while maintaining a high precision. Based on reduction of waiting time, and independence of heart rate, it shortens breath hold duration and allows fast T1-mapping, which is frequently a prerequisite in patients with cardiac diseases.
Exziton-Polaritonen sind hybride Quasiteilchen, die entstehen durch die starke Kopplung zwischen Halbleiter-Exzitonen und Mikrokavitätsphotonen in einem optischen Resonator. Aufgrund ihres bosonischen Charakters können die Polaritonen Kondensate ausbilden. In dieser Arbeit ist der emittierende organische Halbleiter das fluoreszierende Protein mCherry. Um einen räumlichen Einschluss zu generieren wurden hemisphärische Potentiale genutzt. Durch die Variation der Potentiallandschaft (Linse, Molekül, Kette, Su-Schrieffer-Heeger-Kette und Honigwaben-Gitter) konnten Eigenschaften wie beispielsweise topologisch nicht-triviale Defekte experimentell bei Umgebungstemperatur demonstriert werden. Zusammengefasst beschäftigt sich diese Arbeit mit der Exziton-Polartion Kondensation in unterschiedlichen Potentiallandschaften mit dem organischen Halbleiter mCherry.
The inclusive production rates of isolated, prompt photons in p Pb collisions at root s(NN) = 8.16 TeV are studied with the ATLAS detector at the Large Hadron Collider using a dataset with an integrated luminosity of 165 nb(-1) recorded in 2016. The cross-section and nuclear modification factor R-p pb are measured as a function of photon transverse energy from 20 GeV to 550 GeV and in three nucleon-nucleon centre-of-mass pseudorapidity regions, (-2.83, -2.02), (-1.84, 0.91), and (1.09, 1.90). The cross-section and R-p pb values are compared with the results of a next-to-leading-order perturbative QCD calculation, with and without nuclear parton distribution function modifications, and with expectations based on a model of the energy loss of partons prior to the hard scattering. The data disfavour a large amount of energy loss and provide new constraints on the parton densities in nuclei. (C) 2019 The Author. Published by Elsevier B.V.
A search for new phenomena in events with two same- charge leptons or three leptons and jets identi fi ed as originating from b - quarks in a data sample of 36.1 fb of pp collisions at ps = 13TeV recorded by the ATLAS detector at the Large Hadron Collider is reported. No signi fi cant excess is found and limits are set on vector- like quark, fourtop- quark, and same- sign top- quark pair production. The observed ( expected) 95% CL mass limits for a vector- like T - and B - quark singlet are mT > 0 : 98 ( 0 : 99) TeV and mB > 1 : 00 ( 1 : 01) TeV respectively. Limits on the production of the vector- like T5=3 - quark are also derived considering both pair and single production; in the former case the lower limit on the mass of the T5=3 - quark is ( expected to be) 1.19 ( 1.21) TeV. The Standard Model fourtop- quark production cross- section upper limit is ( expected to be) 69 ( 29) fb. Constraints are also set on exotic four- top- quark production models. Finally, limits are set on samesign top- quark pair production. The upper limit on uu ! tt production is ( expected to be) 89 ( 59) fb for a mediator mass of 1TeV, and a dark- matter interpretation is also derived, excluding a mediator of 3TeV with a dark- sector coupling of 1.0 and a coupling to ordinary matter above 0.31.
In this thesis, the Josephson effect in mercury telluride based superconducting quantum point contacts (SQPCs) is studied. Implementing such confined structures into topological superconductors has been proposed as a means to detect and braid Majorana fermions. For the successful realization of such experiments though, coherent transport across the constriction is essential. By demonstrating the Josephson effect in a confined topological system, the presented experiments lay the foundation for future quantum devices that can be used for quantum computation. In addition, the experiments also provide valuable insights into the behavior of the Josephson effect in the low-channel limit (N<20). Due to the confinement of the weak link, we can also study the Josephson effect in a topological insulator, where the edge modes interact.
In conclusion, this thesis discusses the fabrication of, and low-temperature measurements on mercury telluride quantum point contacts embedded within Josephson junctions. We find that the merging of the currently used fabrication methods for mercury telluride quantum point contacts and Josephson junctions does not yield a good enough device quality to resolve subbands of the quantum point contact as quantization effects in the transport properties. As we attribute this to the long dry etching time that is necessary for a top-contact, the fabrication process was adapted to reduce the defect density at the superconductor-semiconductor interface. Employing a technique that involves side contacting the mercury telluride quantum well and reducing the size of the mercury telluride mesa to sub-micrometer dimensions yields a quantized supercurrent across the junction. The observed supercurrent per mode is in good agreement with theoretical predictions for ballistic, one-dimensional modes that are longer than the Josephson penetration depth. Moreover, we find that oscillatory features superimpose the plateaus of the supercurrent and the conductance. The strength of these oscillatory features are sample-dependent and complicate the identification of plateaus. We suggest that the oscillatory features originate mainly from local defects and the short gate electrode. Additionally, resonances are promoted within the weak link if the transparency of the superconductor-HgTe interface differs from one.
Furthermore, the research explores the regimes of the quantum spin Hall effect and the 0.5 anomaly. Notably, a small yet finite supercurrent is detected in the QSH regime. In samples fabricated from thick mercury telluride quantum wells, the supercurrent appears to vanish when the quantum point contact is tuned into the regime of the 0.5 anomaly. For samples fabricated from thin mercury telluride quantum wells, the conductance as well as the supercurrent vanish for strong depopulation. In these samples though, the supercurrent remains detectable even for conductance values significantly below 2 e²/h.
Numerical calculation reproduce the transport behavior of the superconducting quantum point contacts.
Additionally, the topological nature of the weak link is thoroughly investigated using the supercurrent diffraction pattern and the absorption of radio frequency photons. The diffraction pattern reveals a gate independent, monotonous decay of $I_\text{sw}(B)$, which is associated with the quantum interference of Andreev bound states funneled through the quantum point contact. Interestingly, the current distribution in the weak link appears unaffected as the quantum point contact is depleted. In the RF measurements, indications of a 4π periodic supercurrent are observed as a suppression of odd Shapiro steps. The ratio of the 4π periodic current to the 2π periodic current appears to decrease for smaller supercurrents, as odd Shapiro steps are exclusively suppressed for large supercurrents. Additionally, considering the observation that the supercurrent is small when the bulk modes in the quantum point contact are fully depleted, we suggest that the re-emerging of odd Shapiro steps is a consequence of the group velocity of the edge modes being significantly suppressed when the bulk modes are absent. Consequently, the topological nature of the superconducting quantum point contact is only noticeable in the transport properties when bulk modes are transmitted through the superconducting quantum point contact.
The shown experiments are the first demonstration of mercury telluride superconducting quantum point contacts that exhibit signatures of quantization effects in the conductance as well as the supercurrent. Moreover, the experiments suggest that the regime of interacting topological edge channels is also accessible in mercury telluride superconducting quantum point contacts. This is potentially relevant for the realization of Majorana fermions and their application in the field of quantum computation.
Two-level emitters are the main building blocks of photonic quantum technologies and are model systems for the exploration of quantum optics in the solid state. Most interesting is the strict resonant excitation of such emitters to control their occupation coherently and to generate close to ideal quantum light, which is of utmost importance for applications in photonic quantum technology. To date, the approaches and experiments in this field have been performed exclusively using bulky lasers, which hinders the application of resonantly driven two-level emitters in compact photonic quantum systems. Here we address this issue and present a concept for a compact resonantly driven single-photon source by performing quantum-optical spectroscopy of a two-level system using a compact high-β microlaser as the excitation source. The two-level system is based on a semiconductor quantum dot (QD), which is excited resonantly by a fiber-coupled electrically driven micropillar laser. We dress the excitonic state of the QD under continuous wave excitation, and trigger the emission of single photons with strong multi-photon suppression (g\(^{(2)}\)(0)=0.02) and high photon indistinguishability (V = 57±9%) via pulsed resonant excitation at 156 MHz. These results clearly demonstrate the high potential of our resonant excitation scheme, which can pave the way for compact electrically driven quantum light sources with excellent quantum properties to enable the implementation of advanced quantum communication protocols.