• search hit 98 of 396
Back to Result List

Tagging - Development of new qNMR methods

Tagging - Die Entwicklung neuer Quantifizierungmethoden in der NMR Spektroskopie

Please always quote using this URN: urn:nbn:de:bvb:20-opus-219583
  • High-resolution nuclear magnetic resonance (NMR) spectroscopy is used in structure elucidation and qualitative as well as quantitative examination of product components. Despite the worldwide development of numerous innovative NMR spectroscopic methods, several official methods that analyze specific substances and do not represent a holistic analysis, are still in use for the quality control of drugs, food and chemicals. Thus, counterfeit or contaminated products of inferior quality can be brought onto the market and distributed despiteHigh-resolution nuclear magnetic resonance (NMR) spectroscopy is used in structure elucidation and qualitative as well as quantitative examination of product components. Despite the worldwide development of numerous innovative NMR spectroscopic methods, several official methods that analyze specific substances and do not represent a holistic analysis, are still in use for the quality control of drugs, food and chemicals. Thus, counterfeit or contaminated products of inferior quality can be brought onto the market and distributed despite previous quality controls. To prevent this, three NMR spectroscopic methods have been developed within the scope of this work (1) to study the peroxide value in vegetable and animal oils, (2) for the qualitative and quantitative analysis of metal cations and (3) to determine the enantiomeric excess in chiral alcohols. In oil analysis, titration methods are used to determine the bulk quality parameters such as peroxide value, which represents the concentration of peroxides. Titrations show several drawbacks, such as the need of a large amount of sample and solvents, cross reactions and the low robustness. Thus, an alternative NMR spectroscopic method was developed to improve the peroxide analysis by using triphenylphosphine as a derivatization reagent, which reacts with peroxides in a stoichiometric ratio of 1:1 forming triphenylphosphine oxide. In the 1H-31P decoupled NMR spectrum, the signals of the unreacted triphenylphosphine and the reacted triphenylphosphine oxide are detected at 7.4 ppm and 7.8 ppm, respectively. The ratio of the two signals is used for the calculation of the peroxide concentration. 108 oil samples with a peroxide value between 1 meq/kg and 150 meq/kg were examined using the developed method. Oils with a very low peroxide value of less than 3 meq/kg showed a relative standard deviation of 4.9%, highly oxidized oils with a peroxide value of 150 meq/kg of 0.2%. The NMR method was demonstrated as a powerful technique for the analysis of vegetable and krill oils. Another 1H NMR spectroscopic method was developed for the qualitative determination of Be2+, Sr2+ and Cd2+, and for the qualitative and quantitative determination of Ca2+, Mg2+, Hg2+, Sn2+, Pb2+ and Zn2+ by using ethylenediamine tetraacetate (EDTA) as complexing agent. EDTA is a hexadentate ligand that forms stable chelate complexes with divalent cations. The known amount of added EDTA and the signal ratio of free and complexed EDTA are used to calculate the concentrations of the divalent cations, which makes the use of an internal standard obsolete. The use of EDTA with Be2+, Sr2+, Cd2+, Ca2+, Mg2+, Hg2+, Sn2+, Pb2+ and Zn2+ result in complexes whose signals are pH-independent, showing cation-specific chemical shifts and couplings in the 1H NMR spectrum that are used for identification and quantification. In the presented NMR method, the limit of quantification of the cations Ca2+, Mg2+, Hg2+, Sn2+, Pb2+, and Zn2+ was determined with 5-22 μg/mL. This method is applicable in the food and drug sectors. The third NMR spectroscopic method introduced an alternative determination of the enantiomer excess (ee) of the chiral alcohols menthol, borneol, 1-phenylethanol and linalool using phosgene as a derivatizing reagent. Phosgene reacts with a chiral alcohol to form carboxylic acid diesters, made of two identical (RR, SS) or two different enantiomers (RS, SR). These two different types of diastereomers can be examined by the difference of their chemical shifts. In the presented method, the integration values of the carbonyl signals in the 13C NMR spectrum are used for the determination of the enantiomer excess. The limit of quantification depends, among others, on the sample and on the non-labelled or 13C-labelled phosgene used for the analysis. In the case of menthol, a quantification limit of ee=99.1% was determined using non-labelled phosgene and ee=99.9% using 13C-labelled phosgene. The 13C NMR method was also applied for the quality control of the enantiomeric purity of borneol, 1-phenylethanol and linalool. The developed 13C NMR method represents a powerful alternative to Mosher’s reagent for investigating the enantiomeric excess in chiral alcohols. This work demonstrates the variety of possibilities of applications for the quantitative nuclear magnetic resonance spectroscopy in the chemical analysis of drugs, food and chemicals using tagging reactions such as derivatizations and complexations. The nuclear resonance spectroscopic methods developed in this research work represent powerful alternatives to the previously used quality control techniques.show moreshow less
  • Die hochauflösende Kernresonanzspektroskopie findet heute primär Anwendung in derStrukturaufklärung und der qualitativen sowie quantitativen Untersuchung von Produkt-inhaltsstoffen. Trotz der weltweiten Entwicklung von innovativen kernresonanzspektrosko-pischen Methoden sind noch zahlreiche, offiziell anerkannte Methoden zur Qualitätskon-trolle von Arzneimitteln, Lebensmitteln und Chemikalien in Verwendung, die spezifischeSubstanzen kontrollieren und keine ganzheitliche Untersuchung darstellen. Somit könnenverunreinigte, qualitativDie hochauflösende Kernresonanzspektroskopie findet heute primär Anwendung in derStrukturaufklärung und der qualitativen sowie quantitativen Untersuchung von Produkt-inhaltsstoffen. Trotz der weltweiten Entwicklung von innovativen kernresonanzspektrosko-pischen Methoden sind noch zahlreiche, offiziell anerkannte Methoden zur Qualitätskon-trolle von Arzneimitteln, Lebensmitteln und Chemikalien in Verwendung, die spezifischeSubstanzen kontrollieren und keine ganzheitliche Untersuchung darstellen. Somit könnenverunreinigte, qualitativ minderwertige oder gefälschte Produkte trotz vorheriger Quali-tätskontrollen auf den Markt gebracht und vertrieben werden. Um dies zu verhindern,wurden im Rahmen dieser Arbeit drei kernresonanzspektroskopische Methoden entwickelt,die zur (1) Bestimmung der primären Oxidation in pflanzlichen und tierischen Ölen anhandder Peroxidzahl, (2) zur qualitativen und quantitativen Analyse von Metallkationen und(3) zur Ermittlung des Enantiomerüberschusses in chiralen Alkoholen dienen.In der Ölanalytik werden Titrationsverfahren zur Bestimmung der Bulkqualitätsparameterwie auch der Peroxidzahl, welche die Konzentration an Peroxiden aufzeigt, eingesetzt. Dadie Titration neben dem Einsatz von größeren Mengen an Probenmaterial und Lösungsmit-teln, auch Kreuzreaktionen und eine geringe Robustheit aufweist, wurde eine kernreso-nanzspektroskopische Methode entwickelt, in der Triphenylphosphin als Derivatisierungs-reagenz eingesetzt wird, welches mit Peroxiden im stöchiometrischen Verhältnis von 1:1zu Triphenylphosphinoxid reagiert. Im1H-31P entkoppelten Kernresonanzspektrum wer-den die Signale des nicht reagierten Triphenylphosphins bei 7,4 ppm und des reagiertenTriphenylphosphinoxid bei 7,8 ppm detektiert. Das Verhältnis beider Signale wird in dieKonzentration der Peroxide umgerechnet. 108 Ölproben mit einer Peroxidzahl zwischen 1meq/kg und 170 meq/kg wurden mit der entwickelten Methode untersucht. Hierbei zeigtenÖle mit einer sehr geringen Peroxidzahl von weniger als 3 meq/kg eine relative Standard-abweichung von 4,9%, hochoxidierte Öle mit einer Peroxidzahl von 150 meq/kg 0,2%. Diekernresonanzspektroskopische Methode findet Anwendung in der Untersuchung von Krill-und pflanzlichen Ölen.Eine weitere1H kernresonanzspektroskopische Methode wurde zur qualitativen Analyse. Zusammenfassungvon Be2+, Sr2+und Cd2+und zur qualitatitativen sowie quantitativen Bestimmung vonCa2+, Mg2+, Hg2+, Sn2+, Pb2+und Zn2+entwickelt. Hierbei wurde Ethylendiamintetra-acetat (EDTA) als Komplexbildner verwendet. EDTA ist ein sechszähniger-Ligand, derstabile Chelatkomplexe mit zweiwertigen Kationen bildet. Die definierte Menge an EDTAund das Verhältnis von freier und komplexierter EDTA nach Zugabe der Probe werdenfür die Rückrechnung der Konzentration der Kationen verwendet. Somit ist der Einsatzeines internen Standards obsolet. EDTA komplexiert Be2+, Sr2+, Cd2+, Ca2+, Mg2+, Hg2+,Sn2+, Pb2+und Zn2+zu stabilen Komplexen, deren Signale im Protonen-Kernresonanz-spektrum pH-unabhängige und kationenspezifische chemische Verschiebungen und Kop-plungen aufweisen, die zur Identifizierung und Quantifizierung verwendet werden. DieKoaleszenz der∆undΛKonfigurationen des EDTA-Komplexes mit Be2+, Sr2+und Cd2+führt bei 298K zu einer Signalverbreiterung, die eine Quantifizierung bei den vorliegendenParametern unmöglich macht. Die Kationen Ca2+, Mg2+, Hg2+, Sn2+, Pb2+und Zn2+sindab einer Konzentration von 5-22μg/mL quantitativ in wässriger Lösung quantifizierbar.Diese Methode kann im Lebensmittel- und Arzneimittelbereich eingesetzt werden.Die dritte kernresonanzspektroskopische Methode stellt eine neue Bestimmung des Enan-tiomerüberschusses (ee) in den chiralen Alkoholen Menthol, Borneol, 1-Phenylethanol undLinalool unter Einsatz von Phosgen als Derivatisierungsreagenz vor. Phosgen reagiert miteinem chiralen Alkohol zu Carbonsäurediestern, die aus zwei gleichen (RR, SS) oder zweiunterschiedlichen Enantiomeren (RS, SR) entstehen. Diese zwei Diastereomertypen kön-nen anhand der unterschiedlichen, chemischen Verschiebungen ihrer Signale identifiziertwerden. In der vorgestellten Methode wird das Carbonylsignal integriert und zur Bes-timmung des Enantiomerenüberschusses eingesetzt. Die Bestimmungsgrenze ist hierbeiu. a. von dem eingesetzten Phosgen und der Probe abhängig. Bei Menthol wurdeeine Bestimmungsgrenze mittels nicht markiertem Phosgen von ee = 99,1% und mit-tels13C-markiertem Phosgen von ee = 99,9% ermittelt. Die13C Methode wurde zudemzur Qualitätskontrolle der Enantiomerreinheit von Borneol, 1-Phenylethanol sowie vonLinalool eingesetzt. Hierbei enthielten die käuflich erworbenen Chemikalien (-)-Borneolund (S)-1-Phenylethanol jeweils 1,7% des anderen Enantiomers (+)-Borneol bzw. (R)-1-Phenylethanol. Bei (-)-Linalool konnte ein Enantiomerüberschuss von ee = 66,4% undsomit eine größere Verunreinigung durch (+)-Linalool identifiziert werden. Bei Proben,die einen Enantiomerüberschuss von ee < 95,0% aufweisen, sollte eine potentielle, asym-metrische Induktion mittels Kalibrationskurven anhand von künstlichen Enantiomeren-mischungen vorab untersucht werden. Die entwickelte13C kernresonanzspektroskopischeMethode präsentiert eine leistungsstarke Alternative zur Analyse mittels Mosher’s Reagenzfür die Untersuchung des Enantiomerüberschusses in chiralen Alkoholen.Diese Arbeit weist eine Vielfalt an Möglichkeiten der Anwendungen der quantitativen Kern-resonanzspektroskopie in der chemischen Untersuchung von Arzneimitteln, Lebensmittelnund Chemikalien unter Einsatz von Tagging, wie Derivatisierungen und Komplexierun-gen auf. Die hierbei entwickelten kernresonanzspektroskopischen Methoden repräsentierenleistungsstarke Alternativen zu bisher eingesetzten Techniken der Qualitätskontrolleshow moreshow less

Download full text files

Export metadata

Metadaten
Author: Elina Hafer [geb. Zailer]
URN:urn:nbn:de:bvb:20-opus-219583
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Chemie und Pharmazie
Faculties:Fakultät für Chemie und Pharmazie / Institut für Pharmazie und Lebensmittelchemie
Referee:Prof. Dr. Ulrike Holzgrabe
Date of final exam:2020/12/11
Language:English
Year of Completion:2021
DOI:https://doi.org/10.25972/OPUS-21958
Sonstige beteiligte Institutionen:Spectral Service AG
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 54 Chemie / 543 Analytische Chemie
GND Keyword:NMR Spektroskopie; EDTA; Lipid-Peroxide; Chiralität; Derivsatisierung
Tag:Enantiomerüberschuss; Peroxidzahl
qNMR
Release Date:2021/01/13
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand