• search hit 1 of 2
Back to Result List

Identifizierung und Charakterisierung des Signalweges zur Aktivierung von Anionenkanälen während des Pollenschlauchwachstums

Identification and characterization of union channel activation during pollen tube growth

Please always quote using this URN: urn:nbn:de:bvb:20-opus-139232
  • Pollenschläuche sind ein Modellsystem zur Untersuchung pflanzlicher Wachstumsprozesse. Zellwachstum in Pollenschläuchen zeichnet sich durch den gerichteten Transport und Fusion von Vesikeln mit der apikalen Zellmembran des Pollenschlauchs aus. Der Vesikeltransport erfolgt entlang des Pollenschlauchs durch Aktin-Filamente bis an die Organell- und Zytoskelett-freie apikale Zone, wo sich die Vesikel sammeln und in oszillierenden Wachstumsschüben mit der apikalen Zellmembran fusionieren (Yang et al., 1998; Zonia et al., 2001, Gu et al., 2005; ChenPollenschläuche sind ein Modellsystem zur Untersuchung pflanzlicher Wachstumsprozesse. Zellwachstum in Pollenschläuchen zeichnet sich durch den gerichteten Transport und Fusion von Vesikeln mit der apikalen Zellmembran des Pollenschlauchs aus. Der Vesikeltransport erfolgt entlang des Pollenschlauchs durch Aktin-Filamente bis an die Organell- und Zytoskelett-freie apikale Zone, wo sich die Vesikel sammeln und in oszillierenden Wachstumsschüben mit der apikalen Zellmembran fusionieren (Yang et al., 1998; Zonia et al., 2001, Gu et al., 2005; Chen et al., 2003; Gu et al., 2005; de Graaf et al., 2005; Lee et al., 2008; Cheung et al., 2010; Quin und Yang et al., 2011). Die polaren Wachstumsprozesse des Pollenschlauches sind an ein Ionenflussmuster gekoppelt, welches durch den Einsatz der Vibrating Probe-Technik zeitlich aufgelöst werden konnten. Es konnte ein zeitversetzter oszillierender Einstrom von Calcium, Kalium und Protonen sowie der zeitgleich mit den Wachstumsschüben auftretende oszillierende Ausstrom von Chlorid aus der Pollenschlauchspitze nachgewiesen werden (Kühtreiber und Jaffe et al., 1990; Holdaway-Clarke et al., 1997; Feijo et al., 1999, Messerli et al., 1999, Zonia et al., 2001). Die Inhibierung des Chloridausstroms resultiert in einem sofortigen Wachstumsstopp und verdeutlicht die Notwendigkeit des Anionenausstroms für das polare Zellwachstum in Pollenschläuchen (Breygina et al., 2009). Durch die in dieser Arbeit durchgeführten Experimente konnten die an dem Anionenausstrom beteiligten Anionenkanäle, sowie deren Ca2+-abhängigen regulatorischen Komponenten identifiziert und mit Hilfe der TEVC-Technik elektrophysiologisch an intakten Arabidopsis thaliana-Pollenschläuchen charakterisiert werden. Weiterhin konnte die physiologische Rolle der für den Anionenausstrom verantwortlichen Kanäle auf das polare Zellwachstum in Arabidopsis thaliana Pollenschläuchen nachgewiesen werden. Durch Transkriptionsanalysen wurde die Expression des S-Typ-Anionenkanals SLAH3 sowie der R-Typ-Anionenkanäle ALMT12, ALMT13 und ALMT14 in Arabidopsis thaliana Pollenschläuchen belegt und deren transkriptionelle Regulation durch die Anionenkonzentration und Komposition des Keimungsmediums nachgewiesen werden. Eine elektrophysiologische Charakterisierung an intakten Arabidopsis thaliana Pollenschläuchen konnte sowohl einen Anstieg der SLAH3 vermittelten S-Typ-Ströme, als auch ALMT12-, ALMT13- und ALMT14 vermittelte R Typ-Anionenströme bei steigenden Anionenkonzentrationen im Keimungsmedium nachweisen. Die Charakterisierung der Verlustmutanten von SLAH3, ALMT12, ALMT13 und ALMT14 resultierte in einer Abnahme des Anionenausstroms und einer Reduktion des Längenwachstums der getesteten Mutanten. Es konnten ebenfalls die regulatorischen Komponenten der Signalkette zur Anionenkanalaktivierung identifiziert werden. Die Aktivierung von SLAH3 und ALMT12 durch die Calcium-abhängigen Kinasen CPK2, CPK20 und CPK6 aus Arabidopsis thaliana Pollenschläuchen konnte mittels einer Kombination von elektrophysiologischen- und molekularbiologischen Techniken nachgewiesen werden. Somit wurden nicht nur die für den Anionenausstrom verantwortlichen Anionenkanäle identifiziert, sondern auch die Signalkette zu deren Aktivierung durch spitzenlokalisierte Calcium-abhängige Kinasen aufgeklärt werden. Diese Signalkaskade führt ebenfalls durch die artifizielle Erhöhung der zytoplasmatischen Calciumkonzentration durch das Calcium-Ionophor A23187 zu einem Anstieg des S Typ- und R Typ Anionenkanalaktivität in Arabidopsis thaliana-Pollenschläuchen. Eine intensivere Charakterisierung des entdeckten Calcium-vermittelten Anionenausstroms erfolgte am transgenen pLat52-Chlorid-Sensor bzw. an YC3.6 Tabak Pollenschläuchen durch die Kombination von TEVC-Technik und Fluoreszensmikroskopie. Dies ermöglichte die simultane Messung der zytoplasmatischen Calcium- bzw. Chloridkonzentration in Nicotiana tabacum Pollenschläuchen bei gleichzeitiger Ableitung der Ganzzellströme. Die elektrophysiologische und fluoreszenzmikroskopische Charakterisierung erbrachte erstmals den Nachweis für eine exklusive Lokalisation von hyperpolarisations-aktivierten Calciumkanälen in der Pollenschlauchspitze, welche sich durch die Verwendung der TEVC-Technik gezielt aktivieren ließen. Diese Aktivierung der spitzenlokalisierten Calciumkanäle induziert den Anionenausstrom durch den Anstieg der apikalen Calciumkonzentration. Die Inhibierung der Calciumkanäle durch den Calciumkanalblocker Lanthan führt zu einem vollständigen Verlust des Calciumeinstroms und des daraus resultierenden Anioneneinstroms. Durch die Inhibierung der Calciumkanäle kommt es gleichzeitig zu einer Akkumulation von Chlorid in der apikalen Zone, die zum Anschwellen der Pollenschlauchspitze führt. Die Inhibierung der Anionenkanäle durch Niflumsäure hat hingegen keinen Einfluss auf den spitzenlokalisierten Calciumeinstrom, sondern reduziert nur den gemessenen Anionenausstrom. Somit wird ein kausaler Zusammenhang zwischen der Erhöhung der apikalen Ca2+-Konzentration und einer Anionenkanalaktivierung weiter verdeutlicht. Durch die Anwendung der TEVC-Technik an intakten Pollenschläuchen konnten erstmals Aktionspotenzial ähnliche Depolarisierungstransienten, welche sich auf die apikale Zone des Pollenschlauchs beschränken und zeitgleich mit dem Anionenausstrom stattfinden, nachgewiesen werden. Durch diese Arbeit kann erstmals ein Modell des Calcium-vermittelten oszillierenden Anionenausstroms aus der Pollenschlauchspitze aufgestellt werden. Dieses verknüpft die Regulation der beteiligten R-Typ-Anionenkanäle ALMT12, ALMT13 und ALMT14 und des S-Typ-Anionenkanals SLAH3 durch die Calcium-abhängigen Kinasen CPK2, CPK20 und CPK6 mit dem spitzenlokalisierten oszillierenden Calciumeinstrom. Das Modell verdeutlicht die physiologische Bedeutung des simultanen Ca2+-Ein- und Anionenausstroms für das polare Zellwachstum von Pollenschläuchen.  show moreshow less
  • In this study pollen tubes were used as a model cell system to study plant polar growth. Polar cell growth is characterized by a vectorial transport of vesicles to the apical dome of pollen tubes. Vesicles fuse with the apical plasma membrane leading to a polar elongation of the tube tip. Vesicle transport to the clear zone is mediated by F actine bundles and these vesicles serve as a pool of membranes for the surface increase. In an oscillatory growth pulse the vesicle move from the clear zone to the apical plasma membrane in order to fuseIn this study pollen tubes were used as a model cell system to study plant polar growth. Polar cell growth is characterized by a vectorial transport of vesicles to the apical dome of pollen tubes. Vesicles fuse with the apical plasma membrane leading to a polar elongation of the tube tip. Vesicle transport to the clear zone is mediated by F actine bundles and these vesicles serve as a pool of membranes for the surface increase. In an oscillatory growth pulse the vesicle move from the clear zone to the apical plasma membrane in order to fuse with the plasma membrane (Yang et al., 1998; Zonia et al., 2001, Gu et al., 2005; Chen et al., 2002; Gu et al., 2005; de Graaf et al., 2005; Lee et al., 2008; Cheung et al., 2010; Quin und Yang et al., 2011). Pollen tube elongation is associated with a distinct pattern of ion fluxes that cannot be uncoupled from the growth process. A tip localized influx of calcium, potassium and protons, as well as the simultaneous oscillatory apical efflux of chloride are features of growing pollen tubes (Kühtreiber und Jaffe et al., 1990; Holdaway-Clarke et al., 1997; Feijo et al., 1999, Messerli et al., 1999, Zonia et al., 2001). Inhibition of apical chloride efflux leads to an instantaneous pollen tube growth arrest (Breygina et al., 2009) demonstrating the importance of the oscillatory apical chloride efflux for cell elongation. Within the framework of this dissertation, I was able to identify the anion channels responsible for anion fluxes and to characterize the regulatory components for channel activation by using the TEVC technique in intact pollen tubes. A quantitative analysis of ion channel transcripts in Arabidopsis thaliana pollen tubes via qRT-PCR demonstrated the expression of the S-type anion channel SLAH3, the R-type anion channels ALMT12, ALMT13 and ALMT14 as well as their transcriptional regulation by different anion concentrations. The electrophysiological characterization of the anion currents in intact pollen tubes revealed an anion concentration that depends on an increase in SLAH3 mediated S-type currents and ALMT12, ALMT13 and ALMT14 mediated R-type currents with rising anion concentrations in the germination medium. The electrophysiological characterization of slah3, almt12, almt12 x almt13 and almt12 x almt14 knock-out mutant pollen tubes resulted in decreased anion currents and a reduction in pollen tube length compared to the wild-type. An activation of SLAH3 and ALMT12 by the calcium dependent kinases CPK2, CPK20 and CPK6 in Arabidopsis thaliana pollen tubes was proven with a combination of electrophysiological and molecular biology techniques. Strong evidence is presented here for the regulation of oscillatory anion efflux by simultaneous calcium influx at the pollen tube tip via calcium dependent kinases. An increase of the cytoplasmic calcium concentration by the calcium ionophore A23187 leads to an increase of S-type and R-Type anion channel current in Arabidopsis thaliana pollen tubes. In order to substantiate the hypothesis of a Ca2+-dependent anion channel activation mechanism in pollen tubes a combination of TEVC technique and fluorescence microscopy was applied with transgenic tobacco pollen tubes expressing the genetically encoded anion- and Ca2+-reporters Cl--Sensor and YC3.6, respectively. This technique enabled the simultaneous measurement of the cytoplasmic calcium- or chloride concentration along with voltage-clamp experiments. The application of 1 sec lasting hyperpolarization pulses with the TEVC technique and simultaneous live-cell Ca2+- and anion imaging demonstrated the existence of hyperpolarization activated calcium channels in the pollen tube tip. The activation of the tip localized calcium channels by -200 mV pulses evoked a decrease in apical anion concentration depending on an elevation of the calcium concentration at the pollen tube tip. Inhibition of the calcium channels by lanthan abolished the calcium influx and subsequently the anion efflux. Inhibiting the Ca2+ channels resulted in an apical accumulation of the cytoplasmic anion concentration and led to pollen tube tip swelling. Anion channel inhibition by niflumic acid did not alter tip localized calcium influx providing sufficient evidence for a causal relationship between Ca2+- and anion channel activity. Furthermore, evidence is presented for the existence of membrane potential spikes in the pollen tube tip caused by the Ca2+-dependent anion channel activation that look very similar to action potentials and were located in the pollen tube tip. This local restriction of the Ca2+-dependent anion channel activation to the region of growth shows the necessity of the anion efflux for the pollen tube elongation. On the basis of this dissertation I was able to propose a model of a calcium-dependent anion channel activation mechanism in the pollen tube tip, which involves the R-type anion channels ALMT12, ALMT13 and ALMT14 and the S-type anion channel SLAH3 being regulated by the calcium dependent kinases CPK2, CPK20 and CPK6. The model highlights the physiological relevancy of the interplay between the tip focused anion efflux and Ca2+ influx for the pollen tube growth process.  show moreshow less

Download full text files

Export metadata

Metadaten
Author: Timo Gutermuth
URN:urn:nbn:de:bvb:20-opus-139232
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Biologie
Faculties:Fakultät für Biologie / Julius-von-Sachs-Institut für Biowissenschaften
Referee:Prof. Dr. Rainer Hedrich, Prof. Dr. Erhard Wischmeyer
Date of final exam:2016/09/23
Language:German
Year of Completion:2017
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 57 Biowissenschaften; Biologie / 571 Physiologie und verwandte Themen
GND Keyword:Pollenschlauch
Tag:Pollenschlauch Calcium Anionen Kanal Kinase; pollen tube calcium anion channel kinase
Release Date:2017/09/25
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand