• search hit 1 of 1
Back to Result List

Experimentelle und theoretische Untersuchungen zur gasdruckabhängigen Wärmeleitfähigkeit von porösen Materialien

Experimental and theoretical investigations on the gas-pressure dependent thermal conductivity of porous materials

Please always quote using this URN: urn:nbn:de:bvb:20-opus-153887
  • Als Wärmedämmstoffe werden üblicherweise makroporöse Stoffsysteme wie Schäume, Pul-verschüttungen, Faservliese und – wolle eingesetzt. Zusätzlich finden mikro- und mesoporöse Dämmstoffe wie Aerogele Anwendung. Um effiziente Wärmedämmstoffe entwickeln zu können, muss der Gesamtwärmetransport in porösen Materialien verstanden werden. Die ein-zelnen Wärmetransport-Mechanismen Festkörperwärmeleitung, Gaswärmeleitung und Wärme-strahlung können zuverlässig analytisch beschrieben werden. Bei manchen porösen Materialien liefert jedoch auch eineAls Wärmedämmstoffe werden üblicherweise makroporöse Stoffsysteme wie Schäume, Pul-verschüttungen, Faservliese und – wolle eingesetzt. Zusätzlich finden mikro- und mesoporöse Dämmstoffe wie Aerogele Anwendung. Um effiziente Wärmedämmstoffe entwickeln zu können, muss der Gesamtwärmetransport in porösen Materialien verstanden werden. Die ein-zelnen Wärmetransport-Mechanismen Festkörperwärmeleitung, Gaswärmeleitung und Wärme-strahlung können zuverlässig analytisch beschrieben werden. Bei manchen porösen Materialien liefert jedoch auch eine Wechselwirkung zwischen den verschiedenen Wärmetransport-Mechanismen, d.h. die Kopplung von Festkörper- und Gaswärmeleitung, einen hohen Beitrag zur Gesamtwärmeleitfähigkeit. Wie hoch dieser Kopplungseffekt bei einer bestimmten Probe ausfällt, kann bisher schwer abgeschätzt werden. Um den Kopplungseffekt von Festkörper- und Gaswärmeleitung besser zu verstehen, sind sowohl experimentelle als auch theoretische Untersuchungen an verschiedenen porösen Stoffsystemen erforderlich. Zusätzlich kann ein zuverlässiges theoretisches Modell dazu beitragen, die mittlere Porengröße von porösen Mate-rialien zerstörungsfrei anhand von gasdruckabhängigen Wärmeleitfähigkeitsmessungen zu bestimmen. Als Modellsystem für die experimentellen Untersuchungen wurde der hochporöse Feststoff Aerogel verwendet, da seine strukturellen Eigenschaften wie Porengröße und Dichte während der Synthese gut eingestellt werden können. Es wurden Resorcin-Formaldehyd-Aerogele mit mittleren Porengrößen von etwa 600 nm, 1 µm und 8 µm sowie daraus mittels Pyrolyse abge-leitete Kohlenstoff-Aerogele synthetisiert und jeweils hinsichtlich ihrer Struktur und Wärme-leitfähigkeiten experimentell charakterisiert. Die Gesamtwärmeleitfähigkeiten dieser Aerogele wurden für verschiedene Gasatmosphären (Kohlenstoffdioxid, Argon, Stickstoff und Helium) in Abhängigkeit vom Gasdruck durch das Hitzdraht-Verfahren bestimmt. Hierfür wurde der Messbereich der Hitzdraht-Apparatur des ZAE Bayern mittels einer Druckzelle auf 10 MPa erweitert. Die Messergebnisse zeigen, dass bei allen Aerogel-Proben Festkörper- und Gaswär-meleitung einen deutlichen Kopplungsbeitrag liefern: Die gemessenen gasdruckabhängigen Wärmeleitfähigkeiten sind um Faktor 1,3 bis 3,3 höher als die entsprechenden reinen Gas-wärmeleitfähigkeiten. Die jeweilige Höhe hängt sowohl vom verwendeten Gas (Gaswärmeleitfähigkeit) als auch vom Aerogeltyp (Festkörperwärmeleitfähigkeit und Festkörperstruktur) ab. Ein stark vernetzter Festkörper verursacht beispielsweise einen niedrigeren Kopplungsbei-trag als ein weniger stark vernetzter Festkörper. Andererseits wurde die gasdruckabhängige Wärmeleitfähigkeit von Melaminharzschaum – einem flexiblen, offenporigen und hochporösen Material – in einer evakuierbaren Zwei-Plattenapparatur unter Stickstoff-Atmosphäre bestimmt. Das Material zeichnet sich dadurch aus, dass die Addition der Einzelwärmeleitfähigkeiten gut erfüllt ist, d.h. kein Kopplungsef-fekt auftritt. Allerdings konnte gezeigt werden, dass die gestauchte und damit unregelmäßige Struktur von Melaminharzschaum die Kopplung von Festkörper- und Gaswärmeleitung deut-lich begünstigt. Je stärker die Melaminharzschaumprobe komprimiert wird, umso stärker fällt der Kopplungseffekt aus. Bei einer Kompression um 84 % ist beispielsweise die gemessene gasdruckabhängige Wärmeleitfähigkeit bei 0,1 MPa um ca. 17 % gegenüber der effektiven Wärmeleitfähigkeit von freiem Stickstoff erhöht. Die experimentellen Untersuchungen wurden durch theoretische Betrachtungen ergänzt. Zum einen wurde die Kopplung von Festkörper- und Gaswärmeleitung anhand einer Serienschal-tung der thermischen Widerstände von Festkörper- und Gasphase dargestellt, um die Abhän-gigkeit von verschiedenen Parametern zu untersuchen. Dadurch konnte gezeigt werden, dass der Kopplungsterm stets von den Verhältnissen aus Festkörper- und Gaswärmeleitfähigkeit sowie aus den geometrischen Parametern beider Phasen abhängt. Des Weiteren wurden mit dem Computerprogramm HEAT2 Finite-Differenzen-Simulationen an Modellstrukturen durchgeführt, die für poröse Stoffsysteme, insbesondere Aerogel, charakteristisch sind (Stege, Hälse, Windungen und tote Enden). Die simulierten gasdruckabhängigen Wärmeleitfähigkeiten zeigen deutlich, dass die Festkörperstruktur mit der geringsten Vernetzung, d.h. das tote Ende, am meisten zur Kopplung von Festkörper- und Gaswärmeleitung beiträgt. Dies korre-liert mit den experimentellen Ergebnissen. Darüber hinaus kann man erkennen, dass die Ge-samtwärmeleitfähigkeit eines schlecht vernetzten porösen Systems, wo also ein hoher Kopp-lungseffekt (Serienschaltung) auftritt, niemals größer wird als die eines gut vernetzten Sys-tems mit gleicher Porosität, wo hauptsächlich paralleler Wärmetransport durch beide Phasen stattfindet. Schließlich wurden drei Modelle entwickelt bzw. modifiziert, um die gasdruckabhängige Wärmeleitfähigkeit von porösen Stoffsystemen theoretisch beschreiben zu können. Zunächst wurde ein für Kugelschüttungen entwickeltes Modell für Aerogel angepasst, d.h. Kopplung von Festkörper- und Gaswärmeleitung wurde nur in den Lücken zwischen zwei benachbarten Partikeln berücksichtigt. Ein Vergleich mit den Messkurven zeigt, dass der ermittelte Kopplungsterm zu gering ausfällt. Daher wurde ein bereits existierendes Aerogelmodell mit kubischer Einheitszelle, welches zusätzlich Kopplung zwischen den einzelnen Partikelsträngen beinhaltet, verbessert. Auch dieses Modell liefert keine zufriedenstellende Übereinstimmung mit den Messwerten, denn der Kopplungsbeitrag wird immer noch unterschätzt. Das liegt daran, dass die gewählte regelmäßige kubische Struktur für Aerogel zu ungenau ist. So geht bei der Berechnung des Kopplungsterms der bereits erwähnte hohe Beitrag durch tote Enden (und auch Windungen) verloren. Erfahrungsgemäß können jedoch alle für Aerogel erhaltenen gasdruckabhängigen Messkurven mit dem sogenannten Skalierungsmodell relativ gut beschrieben werden. Das entspricht dem Knudsen-Modell für reine Gaswärmeleitung, welches mit einem konstanten Faktor skaliert wird. Die Anwendung dieses einfachen Modells auf die Messdaten hat gezeigt, dass die Akkommodationskoeffizienten von Helium in Aerogel deut-lich höher sind als die Literaturwerte (ca. 0,3 auf Metalloberflächen): In den vermessenen RF- und Kohlenstoff-Aerogelen lassen sich Akkommodationskoeffizienten nahe 1 für Helium ab-leiten. Darüber hinaus ist das Skalierungsmodell gut geeignet, die mittleren Porengrößen poröser Materialien zuverlässig aus gasdruckabhängig gemessenen Wärmeleitfähigkeitskurven zu bestimmen. Dies stellt somit eine unkomplizierte und zerstörungsfreie Charakterisierungsmethode dar.show moreshow less
  • Common thermal insulation materials are macro porous material systems such as foams, powders, fleeces and fibers. Additionally, micro and meso porous thermal insulations such as aerogels are employed. In order to further optimize thermal insulation materials, the total heat transfer in porous materials has to be quantified. The individual heat transfer mechanisms solid thermal conduction, gaseous thermal conduction and thermal radiation can be described reliably by analytic models. But for some porous materials an interaction of the differentCommon thermal insulation materials are macro porous material systems such as foams, powders, fleeces and fibers. Additionally, micro and meso porous thermal insulations such as aerogels are employed. In order to further optimize thermal insulation materials, the total heat transfer in porous materials has to be quantified. The individual heat transfer mechanisms solid thermal conduction, gaseous thermal conduction and thermal radiation can be described reliably by analytic models. But for some porous materials an interaction of the different heat transfer mechanisms, i.e. coupling of solid and gaseous thermal conduction, occurs and can contribute significantly to the total effective thermal conductivity. So far, it is hard to predict the amount of this coupling contribution for a certain sample. For a better understanding of the coupling effect of solid and gaesous thermal conduction, both experimental and theoretical investigations on different porous material systems are required. Additionally, a reliable theoretical model can help to determine the mean pore size of porous materials in a nonde-structive way from gas-pressure dependent thermal conductivity measurements. Highly porous aerogel was used as model system for the experimental investigations, because its structural properties such as pore size and density can be adapted relatively well during synthesis. Resorcinol formaldehyde aerogels with mean pore sizes of about 600 nm, 1 µm and 8 µm as well as corresponding carbon aerogels obtained by pyrolysis were synthesized and experimentally characterized regarding their structural and thermal properties. Their total ef-fective thermal conductivities were determined by means of hot-wire measurements in different gas atmospheres (carbon dioxide, argon, nitrogen and helium) as a function of gas pressure. For this purpose, the measurement range of the hot-wire apparatus at ZAE Bayern was extended up to 10 MPa using a pressure chamber. The measurement results show that in all aerogel samples an obvious amount of coupling between solid and gaseous thermal conduction occurs: The gas-pressure dependent thermal contributions measured are by a factor of 1.3 to 3.3 higher than the corresponding pure gaseous thermal conductivities, depending on the pore gas (gaseous thermal conductivity) and the kind of aerogel (solid thermal conductivity and solid backbone structure). For example, a strongly connected solid phase causes a lower cou-pling contribution than a loosely connected one. On the other hand, the gas-pressure dependent thermal conductivity of melamine resin foam – a flexible and highly porous material with open pores – was determined with an evacuable guarded hot-plate apparatus in a nitrogen atmosphere. For this kind of material the simple ad-dition of the individual thermal conductivities is observed, i.e. no coupling occurs for standard conditions. However, if compressed, the structure of melamine resin foam becomes irregular and coupling of solid and gaseous thermal conduction occurs. The more the melamine resin foam sample is compressed, the stronger is the coupling effect. For example, the measured gas-pressure dependent thermal coductivity belonging to a compression by 84 % exceeds the effective thermal conductivity of free nitrogen by about 17 % at 0.1 MPa. The experimental investigations were supplemented by theoretical considerations. First of all, coupling of solid and gaseous thermal conduction was described by means of a series connec-tion of the thermal resistances of the solid and the gas phase, in order to examine the depend-ence on different parameters. This investigation shows, that the coupling term depends on the ratios of solid and gaseous thermal conductivity as well as of the geometrical parameters in both phases. Furthermore, with the computer program HEAT2, finite difference calculations were performed for model structures that are characteristic of porous material systems, espe-cially aerogel (struts, necks, torsions and dead ends). The simulated gas-pressure dependent thermal conductivity data show clearly, that the solid backbone structure with the weakest connectivity, i.e. the dead end, causes the highest amount of coupling between solid and gas-eous thermal conduction. This agrees with the experimental results. Moreover, it was found that the total effective thermal conductivity of a weakly connected porous system, where a high coupling effect (serial connection) occurs, never becomes larger than that of a well-connected system with the same porosity, where the heat transfer in both phases happens mostly in parallel. Finally, three models were developed or rather modified, in order to be able to describe the gas-pressure dependent thermal conductivity of porous material systems theoretically. At first, a model originally developed for packed beds of spherical particles was adapted to aerogel, i.e. coupling of solid and gaseous thermal conduction was only taken into account for the gaps between two adjacent particles. Comparison with the experimental curves shows that the coupling term calculated is too low. Therefore, an already existing aerogel model with a cubic unit cell, which includes additional coupling between the individual particle strings, was improved. The agreement of this model with the measurement curves is also very poor, because the cou-pling contribution is still underrated. This is due to the chosen regular cubic structure being too imprecise for irregularly formed aerogel backbones. Thus, when calculating the coupling term, the above-mentioned high contribution due to dead ends (and also torsions) gets lost. Empiri-cally however, all gas-pressure dependent measurement curves received for aerogel, can be described relatively well by the so-called scaling model. This is Knudsen’s model for pure gaseous thermal conduction scaled with a constant factor. The application of this simple model to the experimental data shows that the accommodation coefficients of helium in aerogel are significantly higher than the literature values (around 0.3 on metal surfaces): Within the RF and carbon aerogels investigated accommodation coefficients close to 1 can be derived for helium. Moreover, the scaling model is suitable for a reliable determination of the mean pore sizes of porous materials from gas-pressure dependent thermal conductivity data. Therefore, a straightforward and nondestructive characterization method was found.show moreshow less

Download full text files

Export metadata

Metadaten
Author: Katrin Swimm
URN:urn:nbn:de:bvb:20-opus-153887
Document Type:Doctoral Thesis
Granting Institution:Universität Würzburg, Fakultät für Physik und Astronomie
Faculties:Fakultät für Physik und Astronomie / Physikalisches Institut
Referee:Prof. Dr. Vladimir Dyakonov, Prof. Dr. Jochen Fricke
Date of final exam:2016/12/20
Language:German
Year of Completion:2017
Dewey Decimal Classification:5 Naturwissenschaften und Mathematik / 53 Physik / 536 Wärme
GND Keyword:Wärmeleitfähigkeit; Gasdruck; Poröser Stoff
Tag:Aerogel; Hitzdrahtverfahren; Kopplung von Festkörper- und Gaswärmeleitung; Porengröße
coupling of gaseous and solid thermal conduction; pore size
PACS-Classification:60.00.00 CONDENSED MATTER: STRUCTURAL, MECHANICAL, AND THERMAL PROPERTIES / 65.00.00 Thermal properties of condensed matter (see also section 44 Heat transfer; for thermodynamic properties of quantum fluids and solids, see section 67; for thermal properties of thin films, see 68.60.Dv; for nonelectronic thermal conduction, see 66.25.+g an / 65.60.+a Thermal properties of amorphous solids and glasses: heat capacity, thermal expansion, etc.
Release Date:2017/10/23
Licence (German):License LogoDeutsches Urheberrecht mit Print on Demand