• Treffer 1 von 5
Zurück zur Trefferliste

Improved wall temperature prediction for the LUMEN rocket combustion chamber with neural networks

Zitieren Sie bitte immer diese URN: urn:nbn:de:bvb:20-opus-319169
  • Accurate calculations of the heat transfer and the resulting maximum wall temperature are essential for the optimal design of reliable and efficient regenerative cooling systems. However, predicting the heat transfer of supercritical methane flowing in cooling channels of a regeneratively cooled rocket combustor presents a significant challenge. High-fidelity CFD calculations provide sufficient accuracy but are computationally too expensive to be used within elaborate design optimization routines. In a previous work it has been shown that aAccurate calculations of the heat transfer and the resulting maximum wall temperature are essential for the optimal design of reliable and efficient regenerative cooling systems. However, predicting the heat transfer of supercritical methane flowing in cooling channels of a regeneratively cooled rocket combustor presents a significant challenge. High-fidelity CFD calculations provide sufficient accuracy but are computationally too expensive to be used within elaborate design optimization routines. In a previous work it has been shown that a surrogate model based on neural networks is able to predict the maximum wall temperature along straight cooling channels with convincing precision when trained with data from CFD simulations for simple cooling channel segments. In this paper, the methodology is extended to cooling channels with curvature. The predictions of the extended model are tested against CFD simulations with different boundary conditions for the representative LUMEN combustor contour with varying geometries and heat flux densities. The high accuracy of the extended model’s predictions, suggests that it will be a valuable tool for designing and analyzing regenerative cooling systems with greater efficiency and effectiveness.zeige mehrzeige weniger

Volltext Dateien herunterladen

Metadaten exportieren

Weitere Dienste

Teilen auf Twitter Suche bei Google Scholar Statistik - Anzahl der Zugriffe auf das Dokument
Metadaten
Autor(en): Kai Dresia, Eldin Kurudzija, Jan Deeken, Günther Waxenegger-Wilfing
URN:urn:nbn:de:bvb:20-opus-319169
Dokumentart:Artikel / Aufsatz in einer Zeitschrift
Institute der Universität:Fakultät für Mathematik und Informatik / Institut für Informatik
Sprache der Veröffentlichung:Englisch
Titel des übergeordneten Werkes / der Zeitschrift (Englisch):Aerospace
ISSN:2226-4310
Erscheinungsjahr:2023
Band / Jahrgang:10
Heft / Ausgabe:5
Aufsatznummer:450
Originalveröffentlichung / Quelle:Aerospace (2023) 10:5, 450. https://doi.org/10.3390/aerospace10050450
DOI:https://doi.org/10.3390/aerospace10050450
Allgemeine fachliche Zuordnung (DDC-Klassifikation):6 Technik, Medizin, angewandte Wissenschaften / 62 Ingenieurwissenschaften / 620 Ingenieurwissenschaften und zugeordnete Tätigkeiten
Freie Schlagwort(e):LUMEN; heat transfer; machine learning; neural network; regenerative cooling; rocket engine; surrogate model
Datum der Freischaltung:27.03.2024
Datum der Erstveröffentlichung:12.05.2023
Lizenz (Deutsch):License LogoCC BY: Creative-Commons-Lizenz: Namensnennung 4.0 International